領域外・複数領域(M)
|
セッション小記号
|
地球科学一般・情報地球科学(GI)
|
セッションID
|
M-GI27
|
タイトル
|
和文
|
Data-driven approaches for weather and hydrological predictions
|
英文
|
Data-driven approaches for weather and hydrological predictions
|
タイトル短縮名
|
和文
|
Data driven study in weather prediction
|
英文
|
Data driven study in weather prediction
|
代表コンビーナ
|
氏名
|
和文
|
小槻 峻司
|
英文
|
Shunji Kotsuki
|
所属
|
和文 |
千葉大学 環境リモートセンシング研究センター |
英文
|
Center for Environmental Remote Sensing, Chiba University
|
共同コンビーナ 1
|
氏名
|
和文
|
堀田 大介
|
英文
|
Daisuke Hotta
|
所属
|
和文
|
気象研究所
|
英文
|
Meteorological Research Institute
|
共同コンビーナ 2
|
氏名
|
和文
|
安田 勇輝
|
英文
|
Yuki Yasuda
|
所属
|
和文
|
東京科学大学
|
英文
|
Institute of Science Tokyo
|
共同コンビーナ 3
|
氏名
|
和文
|
関山 剛
|
英文
|
Thomas Sekiyama
|
所属
|
和文
|
気象庁気象研究所
|
英文
|
Meteorological Research Institute
|
発表言語
|
E
|
スコープ
|
和文
|
In the digital era, data-driven techniques are transforming our understanding and prediction capabilities of complex earth systems. This session aims to explore the cutting-edge methodological and applicational studies for weather, climate and hydrological predictions.
Key themes includes: (1) methodological studies to deepen data-driven approaches for geoscience problems, (2) machine/deep learning studies applied for extreme weather-related disasters, (3) climate predictive analysis to discern climate variability, trends, and anomalies, (4) integrating remote sensing and ground data to refine prediction models.
This session aims to foster a rich dialogue among experts, highlighting both the advancements and challenges in data-driven environmental modeling. Participants will gain insights into current best practices and envision the future trajectory of this rapidly evolving domain.
|
英文
|
In the digital era, data-driven techniques are transforming our understanding and prediction capabilities of complex earth systems. This session aims to explore the cutting-edge methodological and applicational studies for weather, climate and hydrological predictions.
Key themes includes: (1) methodological studies to deepen data-driven approaches for geoscience problems, (2) machine/deep learning studies applied for extreme weather-related disasters, (3) climate predictive analysis to discern climate variability, trends, and anomalies, (4) integrating remote sensing and ground data to refine prediction models.
This session aims to foster a rich dialogue among experts, highlighting both the advancements and challenges in data-driven environmental modeling. Participants will gain insights into current best practices and envision the future trajectory of this rapidly evolving domain.
|
発表方法
|
口頭および(または)ポスターセッション
|
招待講演
|
大塚 成徳 (国立研究開発法人理化学研究所計算科学研究センター)
犬伏 正信 (東京理科大学)
|