地球人間圏科学(H)
セッション小記号 計測技術・研究手法(TT)
セッションID H-TT14
タイトル 和文 高精細地形地理情報と地球表層におけるコネクティビティ
英文 HIGH-DEFINITION TOPOGRAPHIC AND GEOGRAPHIC DATA FOR EARTH SURFACE CONNECTIVITY
タイトル短縮名 和文 高精細地形地理情報連結性
英文 HD-TOPO FOR EARTH SURF CONNECTIVITY
代表コンビーナ 氏名 和文 早川 裕弌
英文 Yuichi S. Hayakawa
所属 和文 北海道大学地球環境科学研究院
英文 Faculty of Environmental Earth Science, Hokkaido University
共同コンビーナ 1 氏名 和文 Candide Lissak
英文 Candide Lissak
所属 和文 Universite de Rennes
英文 Universite de Rennes
共同コンビーナ 2 氏名 和文 小倉 拓郎
英文 Takuro Ogura
所属 和文 兵庫教育大学学校教育研究科
英文 Graduate School of Education, Hyogo University of Teacher Education
共同コンビーナ 3 氏名 和文 Gomez Christopher
英文 Christopher A Gomez
所属 和文 神戸大学 海事科学部 海域火山リスク科学研究室
英文 Kobe University Faculty of Maritime Sciences Volcanic Risk at Sea Research Group
発表言語 E
スコープ 和文
Recent technical developments have enabled us to acquire high-definition topographic and geophysical data for geoscientific research, including land surface processes, subsurface structures, submarine/aerial environments, and geo-ecological interactions. Such high-definition or high-resolution data of the Earth's surface, hereby referred to as HiMESD (High-definition Multilayered Earth Surface Data), are particularly useful for studies on landscape developments over relatively short-term (decadal to millennial time scales), which are often assessed with the concept of connectivity in spatial and temporal contexts. HiMESD from the ground, airborne, and sometimes satellite platforms has become ubiquitous in everyday life, while it plays a central role in quantifying and understanding multiple "connectivity" such as sediment, geomorphic, hydrological, and ecological connectivity. HiMESD at various scales, from the micro-scale of rock weathering to the macro-scale spanning several tens of kilometers of fault lines. 
In this session, we invite submissions on topics that challenge the issues of connectivity in the modern Earth surface environment, including the Anthropocene. A range of topics would fit the session framework, including theoretical work, data acquisition, pre- and post-processing, extensive data preservation and archiving, geostatistical analysis, physical modeling, artificial intelligence (machine learning or deep learning), and numerical simulation. The methodological approaches may include, but are not limited to, laser scanning (Lidar), photogrammetry (SfM), GNSS precise positioning, SAR interferometry, multi-beam sonar, ground-penetrating radar, geomagnetic/electromagnetic sensors, and multi/hyperspectral sensors, based on terrestrial (fixed or mobile), aerial (UAS/UAV or manned airborne), or satellite platforms.
英文
Recent technical developments have enabled us to acquire high-definition topographic and geophysical data for geoscientific research, including land surface processes, subsurface structures, submarine/aerial environments, and geo-ecological interactions. Such high-definition or high-resolution data of the Earth's surface, hereby referred to as HiMESD (High-definition Multilayered Earth Surface Data), are particularly useful for studies on landscape developments over relatively short-term (decadal to millennial time scales), which are often assessed with the concept of connectivity in spatial and temporal contexts. HiMESD from the ground, airborne, and sometimes satellite platforms has become ubiquitous in everyday life, while it plays a central role in quantifying and understanding multiple "connectivity" such as sediment, geomorphic, hydrological, and ecological connectivity. HiMESD at various scales, from the micro-scale of rock weathering to the macro-scale spanning several tens of kilometers of fault lines. 
In this session, we invite submissions on topics that challenge the issues of connectivity in the modern Earth surface environment, including the Anthropocene. A range of topics would fit the session framework, including theoretical work, data acquisition, pre- and post-processing, extensive data preservation and archiving, geostatistical analysis, physical modeling, artificial intelligence (machine learning or deep learning), and numerical simulation. The methodological approaches may include, but are not limited to, laser scanning (Lidar), photogrammetry (SfM), GNSS precise positioning, SAR interferometry, multi-beam sonar, ground-penetrating radar, geomagnetic/electromagnetic sensors, and multi/hyperspectral sensors, based on terrestrial (fixed or mobile), aerial (UAS/UAV or manned airborne), or satellite platforms.
発表方法 口頭および(または)ポスターセッション
ジョイントセッション EGU
招待講演 中田 康隆 (京都府立大学大学院 生命環境科学研究科)
伊藤 有加 (大阪公立大学)
時間 講演番号 タイトル 発表者
口頭発表 5月29日 PM2
15:30 - 15:45 HTT14-01 Watershed characteristics influencing volume changes in sandy coasts of Japan 中田 康隆
15:45 - 16:00 HTT14-02 森林及び景観指標を考慮した山地から海岸に至る流域環境の評価と土砂・流木量の推定の試み 北野 陽大
16:00 - 16:15 HTT14-03 Co-seismic Landslides of the January 1st 2024 Earthquake - Noto Peninsula, Japan from LiDAR and UAV Photogrammetry Gomez Christopher
16:15 - 16:30 HTT14-04 針葉樹林帯におけるマルチローター型UAVを用いたレーザー測量及び写真測量の比較検討 西澤 達治
16:30 - 16:45 HTT14-05 A WL-assisted unified DISB-fixed method for RTK positioning in severe constrained observational conditions Huai-Chian Hsu
16:45 - 17:00 HTT14-06 Comparative analysis on topographic measurement methods for active rocky slopes in Täschgufer, Switzerland 早川 裕弌
講演番号 タイトル 発表者
ポスター発表 5月29日 PM3
HTT14-P01 ノッチを用いた八重山諸島における後期完新世地殻変動の再検討 森 紀彰
HTT14-P02 Topographic changes based on LiDAR data during 2008-2022: A case study of the South Kujukuri Plain, Chiba, Japan 伊藤 有加
HTT14-P03 Developing 3D environmental data utilization platform in Human Geosciences: A preview 早川 裕弌