領域外・複数領域(M) | |||
---|---|---|---|
セッション小記号 | 地球科学一般・情報地球科学(GI) | ||
セッションID | M-GI26 | ||
タイトル | 和文 | Data-driven approaches for weather and hydrological predictions | |
英文 | Data-driven approaches for weather and hydrological predictions | ||
タイトル短縮名 | 和文 | Data driven study in weather prediction | |
英文 | Data driven study in weather prediction | ||
代表コンビーナ | 氏名 | 和文 | 小槻 峻司 |
英文 | Shunji Kotsuki | ||
所属 | 和文 | 千葉大学 環境リモートセンシング研究センター | |
英文 | Center for Environmental Remote Sensing, Chiba University | ||
共同コンビーナ 1 | 氏名 | 和文 | 松岡 大祐 |
英文 | Daisuke Matsuoka | ||
所属 | 和文 | 海洋研究開発機構 | |
英文 | Japan Agency for Marine-Earth Science and Technology | ||
共同コンビーナ 2 | 氏名 | 和文 | 岡崎 淳史 |
英文 | Atsushi Okazaki | ||
所属 | 和文 | 千葉大学 | |
英文 | Chiba University | ||
共同コンビーナ 3 | 氏名 | 和文 | 澤田 洋平 |
英文 | Yohei Sawada | ||
所属 | 和文 | 東京大学 | |
英文 | The University of Tokyo | ||
発表言語 | E | ||
スコープ | 和文 |
In the digital era, data-driven techniques are transforming our understanding and prediction capabilities of complex earth systems. This session aims to explore the cutting-edge methodological and applicational studies for weather, climate and hydrological predictions. Key themes includes: (1) methodological studies to deepen data-driven approaches for geoscience problems, (2) machine/deep learning studies applied for extreme weather-related disasters, (3) climate predictive analysis to discern climate variability, trends, and anomalies, (4) integrating remote sensing and ground data to refine prediction models. This session aims to foster a rich dialogue among experts, highlighting both the advancements and challenges in data-driven environmental modeling. Participants will gain insights into current best practices and envision the future trajectory of this rapidly evolving domain. |
|
英文 |
In the digital era, data-driven techniques are transforming our understanding and prediction capabilities of complex earth systems. This session aims to explore the cutting-edge methodological and applicational studies for weather, climate and hydrological predictions. Key themes includes: (1) methodological studies to deepen data-driven approaches for geoscience problems, (2) machine/deep learning studies applied for extreme weather-related disasters, (3) climate predictive analysis to discern climate variability, trends, and anomalies, (4) integrating remote sensing and ground data to refine prediction models. This session aims to foster a rich dialogue among experts, highlighting both the advancements and challenges in data-driven environmental modeling. Participants will gain insights into current best practices and envision the future trajectory of this rapidly evolving domain. |
||
発表方法 | 口頭および(または)ポスターセッション | ||
招待講演 |
本田 匠 (北海道大学大学院理学研究院) 安田 勇輝 (東京工業大学) 白石 健太 (千葉大学) |
時間 | 講演番号 | タイトル | 発表者 |
---|---|---|---|
口頭発表 5月30日 PM1 | |||
13:45 - 14:00 | MGI26-01 | Machine learning enables real-time proactive quality control: A proof-of-concept study | 本田 匠 |
14:00 - 14:15 | MGI26-02 | Predictability of climate tipping: data assimilation approach | 久保 亘 |
14:15 - 14:30 | MGI26-03 | Short-term deep-learning rainfall prediction in Japan | 金子 凌 |
14:30 - 14:45 | MGI26-04 | Advancing Multi-Hazard Worst-Case Scenario Analysis: Maximizing the Potential of Large Ensemble Tropical Cyclone Forecasts | Md. Rezuanul Islam |
14:45 - 15:00 | MGI26-05 | Forecasting monthly sea surface temperature using Koopman mode decomposition | 塩尻 大也 |
15:00 - 15:15 | MGI26-06 | Earth System Modeling in Latent Space: A Time-Varying Parameter Approach | 澤田 洋平 |
口頭発表 5月30日 PM2 | |||
15:30 - 15:45 | MGI26-07 | Super-Resolution Data Assimilation Using Denoising Diffusion Probabilistic Models | 安田 勇輝 |
15:45 - 16:00 | MGI26-08 | 台風予測改善のための衛星観測を用いた大気モデルのパラメータ推定 | 廣瀬 郁希 |
16:00 - 16:15 | MGI26-09 | Uncertainty Quantification of Flood Hazards Focusing on Parameters of a Rainfall-Runoff-Inundation Coupled Model | 日浦 直紀 |
16:15 - 16:30 | MGI26-10 | 深層学習による北半球夏期季節内変動(BSISO)の予測と説明可能性 | 前田 優樹 |
16:30 - 16:45 | MGI26-11 | Downscaling Precipitation Data using Convolutional Neural Network Coupled with Wasserstein Generative Adversarial Networks | 白石 健太 |
講演番号 | タイトル | 発表者 |
---|---|---|
ポスター発表 5月30日 PM3 | ||
MGI26-P01 | Real-Time Forecasting of Energy Consumption in Residential Buildings | Jui Sheng Chou |
MGI26-P02 | Disentanglement of the features in Rankine vortices using VAE | 井貫 恵多朗 |
MGI26-P03 | Machine learning based post-processing to enhance daily rainfall forecasts of July 2019-2021 over the Kyushu region focusing on surface conditions at remote moisture sources | Muditha Madusanka Dantanarayana |
MGI26-P04 | Improving global precipitation estimates from rain gauge observations using local ensemble data assimilation | 武藤 裕花 |