領域外・複数領域 (M) | ||||
---|---|---|---|---|
セッション小記号 | 計測技術・研究手法 (TT) | |||
セッション ID | M-TT43 | |||
タイトル | Machine Learning in Planetary Sciences | |||
タイトル短縮名 | Machine Learning in Planetary Sciences | |||
開催日時 | 口頭セッション | 5/22(日) PM2 |
現地会場 | |
現地ポスターコアタイム | 5/22(日) PM3 | |||
代表コンビーナ | 氏名 | Mario D'Amore | ||
所属 | German Aerospace Center DLR Berlin | |||
共同コンビーナ 1 | 氏名 | Ute Amerstorfer | ||
所属 | Austrian Academy of Sciences | |||
セッション言語 | E | |||
』スコープ |
Due to an increasing amount of data from a continuously increasing number of spacecraft in our solar system, new frameworks for rapidly and intelligently extracting information from these data sets are needed. Machine learning provides such a framework for tackling a wide range of research questions in planetary sciences.
Machine learning approaches could improve existing models, creating computationally efficient algorithms for feature classification and regression problems, e.g. solar wind time series data, planetary surface images or hyperspectral data.
We encourage submissions dealing with machine learning approaches of all levels in planetary sciences. In this session, we aim to provide an overview of the current efforts to integrate machine learning technologies into data driven space research and to highlight state-of-the art developments. |
|||
発表方法 | 口頭およびポスターセッション | |||
共催情報 | 学協会 | - | ||
ジョイント | - |