ユニオン(U)
セッション小記号ユニオン
セッションIDU-04
タイトル和文International Efforts Supporting Global Navigation Satellite System-Enhanced Tsunami Early Warning
英文International Efforts Supporting Global Navigation Satellite System-Enhanced Tsunami Early Warning
タイトル短縮名和文GNSS Tsunami Early Warning
英文GNSS Tsunami Early Warning
代表コンビーナ氏名和文John B Rundle
英文John B Rundle
所属和文University of California Davis
英文University of California Davis
共同コンビーナ 1氏名和文楠城 一嘉
英文Kazuyoshi Nanjo
所属和文静岡県立大学
英文University of Shizuoka
共同コンビーナ 2氏名和文福山 英一
英文Eiichi Fukuyama
所属和文京都大学大学院工学研究科 / 防災科学技術研究所
英文Kyoto University / National Research Institute for Earth Science and Disaster Resilience
発表言語E
スコープ和文With little to no warning more than 230,000 lives were lost to the Great Indian Ocean Tsunami of December 26, 2004. This devastating loss of life focused the efforts of scientists, engineers and politicians to strengthen tsunami early warning systems beginning with an accurate and rapid estimate of tsunami potential. A combined network of seismic and geodetic sensors quickly emerged as an accurate, efficient, and cost effective enhancement to tsunami early warning systems for those at risk communities nearest the earthquake epicenter. In the months following the Great Indian Ocean Tsunami, geophysicists demonstrated that analysis the GPS network of the Global Geodetic Observing System could have provided warning within 15 minutes after the Sumatran earthquake if the network data were available in real time. On March 11, 2011, the Tohoku-oki earthquake and tsunami unleashed another terrible tragedy upon the Japanese people and posed great challenges to the Japanese government. The Tohoku-oki earthquake occurred off shore from the world's most advanced GPS network, the GEONET, designed and operated by The Geospatial Information Authority of Japan (GSI). The Tohoku-oki earthquake did underscore the potential and extraordinary societal value of Global Navigation Satellite Systems (GNSS) to tsunami warning systems. Several retrospective studies of the Tohoku-oki earthquake deformation captured by the GEONET demonstrated that accurate tsunami inundation predictions could be provided within 5 minutes of the earthquake occurrence.

In this session, we solicit papers on topics related to the realization of such a system, including instrumentation, data collection and availability, modeling, forecasting/nowcasting, and software development, as well as capacity building and linkages to international organizations, the Sendai Framework for Disaster Risk Reduction, and UN Sustainable Development Goals.
英文With little to no warning more than 230,000 lives were lost to the Great Indian Ocean Tsunami of December 26, 2004. This devastating loss of life focused the efforts of scientists, engineers and politicians to strengthen tsunami early warning systems beginning with an accurate and rapid estimate of tsunami potential. A combined network of seismic and geodetic sensors quickly emerged as an accurate, efficient, and cost effective enhancement to tsunami early warning systems for those at risk communities nearest the earthquake epicenter. In the months following the Great Indian Ocean Tsunami, geophysicists demonstrated that analysis the GPS network of the Global Geodetic Observing System could have provided warning within 15 minutes after the Sumatran earthquake if the network data were available in real time. On March 11, 2011, the Tohoku-oki earthquake and tsunami unleashed another terrible tragedy upon the Japanese people and posed great challenges to the Japanese government. The Tohoku-oki earthquake occurred off shore from the world's most advanced GPS network, the GEONET, designed and operated by The Geospatial Information Authority of Japan (GSI). The Tohoku-oki earthquake did underscore the potential and extraordinary societal value of Global Navigation Satellite Systems (GNSS) to tsunami warning systems. Several retrospective studies of the Tohoku-oki earthquake deformation captured by the GEONET demonstrated that accurate tsunami inundation predictions could be provided within 5 minutes of the earthquake occurrence.

In this session, we solicit papers on topics related to the realization of such a system, including instrumentation, data collection and availability, modeling, forecasting/nowcasting, and software development, as well as capacity building and linkages to international organizations, the Sendai Framework for Disaster Risk Reduction, and UN Sustainable Development Goals.
発表方法口頭および(または)ポスターセッション