
Review 論文要旨集

Progress in Earth and Planetary Science

(第二版:論文出版年度 2014年4月~2022年2月)

日本地球惑星科学連合(JpGU)Open Access journal https://progearthplanetsci.springeropen.com/

目 次

1. Space and planetary sciences

2.

大然及び実験による高圧・衝撃で生成する地球及び地球外物質	. 2
地球に影響を与える太陽トランジェント現象の解明:第24太陽活動周期における進展のレビュー	. 3
地球気候における太陽と中層大気/熱圏/電離圏の役割 (ROSMIC): これまでの進展と今後の展開	. 4
太陽の転変と極限:理解の現状	. 5
原始惑星系円盤磁場の地球型惑星の化学組成への寄与	. 6
地球放射線帯のダイナミクス:SCOSTEP/VarSITI 期間における研究の進展	. 7
SCOSTEP の5か年プログラム VarSITI(太陽活動変動とその地球への影響)のレビュー	. 8
中緯度 SuperDARN レーダー網の成果のレビュー	. 9
地球近傍の宇宙空間でおこる擾乱のシミュレーション:1. 磁気嵐	10
地球近傍の宇宙空間でおこる擾乱のシミュレーション:2. オーロラ・サブストーム	. 11
はやぶさ2到着以前の小惑星リュウグウ	. 12
赤道及び低緯度における真夜中過ぎ電離圏擾乱の発生機構に関するレビュー	. 13
日没後の赤道電離圏F領域高度上昇-それとも上昇流の成長か?	14
赤道スプレッドF生成に対する日没後の鉛直プラズマ・ドリフト速度の影響	15
シンチレーション評価と予測に向けた赤道電離圏プラズマバブルの数値シミュレーション研究に 関するレビュー	. 16
火星のコアの構造―簡潔なレビューと InSight に期待される新たな知見―	. 17
極端地磁気誘導電流のレビュー	18
光球面磁場に基づいた太陽コロナ磁場と太陽プラズマ噴出現象の電磁流体モデリング	19
高度50-110km 領域の力学と構造の研究のための中波および短波レーダー技術のレビュー	20
太陽地球結合系の気候・天気に関する国際共同研究プロジェクト (CAWSES II) の総括	21
次世代欧州非干渉散乱レーダー(EISCAT_3D)のサイエンスケース	22
太陽地球システムの短期変動:CAWSES-II 期間に得られた成果の概略	23
国際研究計画のための e サイエンスと情報学	24
太陽が気候変動に与える影響は何だろうか? CAWSES-II 期間中の研究活動の概観	25
気候変動に対する中間圏-熱圏-電離圏システムの応答と CAWSES-II の貢献	. 26
下層大気からの入力に対するジオスペースの応答:CAWSES-II タスクグループ4の成果	27
Atmospheric and hydrospheric sciences	
気候学際研究モデル (MIROC) を中心とした地球システムモデリングの20年	. 30
d4PDF:地球温暖化リスク評価のための大規模アンサンブル高解像度気候モデルシミュレーション	. 31
非静力学領域の大気大循環モデルの力学:全球非静力学大気モデル比較実験	. 32
全球非静力学大気モデルによる雲プロセスに関する気候感度の不確実性の低減	33
地球の気候を支配する海大陸の海岸線	34
スーパーコンピュータ「京」を用いた高解像度全球非静力学大気シミュレーションの成果と挑戦	35
山岳域における大気化学観測に関する総説	36
放射強制力に対する地球平均地上気温の過渡的応答に関する理解の現状	37
雲解像モデルへのダウンスケーリング型エアロゾル導入システム(ALICIS)開発レビュー	38
中間圏および下部熱圏の力学・レビュー	30

	IPCC AR5における地球システムモデリングとこれから	40
	非静力学正20面体格子大気モデル NICAM: 概要および開発	41
3.	Human geosciences · Biogeosciences	
	石造文化財等における塩類風化に関する理論的研究のレビュー	44
	ヒ素の循環と汚染	45
	地球温暖化と海洋酸性化への海洋の石灰化生物の応答に関する展望	
	一高二酸化炭素濃度下での「温暖地球」におけるサンゴと有孔虫の挙動一	46
	海底熱水の物理・化学的多様性が熱水生態系に及ぼす影響についての理論的考察	47
	環境研究および生態学研究において炭素・窒素同位体比を利用するための生化学的・生理学的基礎	48
4.	Solid earth sciences	
	前期 - 中期更新世境界と酸素同位体比ステージ19のレビュー	50
	地震カタログの不均質性の可視化:モデリング・分析・補正	51
	地球型惑星の強度モデルに基づいたリソスフェアの構造と進化の考察	52
	マントル深部での融解,全地球規模での水の循環と海水量の安定性への影響	53
	核―マントル結合系の進化:レビューと将来展望について	54
	水素によって促進された鉱物の電気伝導度について	55
	繰り返し地震の検出と断層スロースリップ推定への応用	56
	緊急地震速報:"強震が到達するまでの数秒間"が意味することは?	57
	GNSS データの非線形ダイナミクス解析:定量化,先行現象と同期現象	58
	カリフォルニアフランシスカンコンプレックスにおける海洋プレート層序の構造的形態と変化: メランジュの起源と沈み込み – 付加過程に関する知見	59
	スラブ変成作用の地震波によるイメージングと稍深発スラブ内地震の発生原因	60
	高圧下での三次元イメージング:GSECARS ビームラインでの高圧 X 線マイクロトモグラフィー開発におけるこの10年	61
	伊豆・小笠原・マリアナ弧の沈み込み初期過程に着目したフィリピン海プレートの誕生,進化,消滅	62
	沈み込み帯前弧におけるマントルの加水作用と塩素に富む流体	63
	地球型惑星や衛星の中心核固化様式とダイナモ活動への示唆:	
	鉄の雪が降り硫化鉄が浮き上がる内核成長	
	より現実的なコアーマントル境界の熱流束パターンへ向けて:惑星ダイナモの多様性の原因	65
	高圧における金属鉄の音速:その実験的制約と外挿,そして地震学モデルとの比較	66
	付加体中の断層岩から洞察した沈み込み帯における地震断層運動	
	高温高圧下における熱水流体とマグマの相互作用	68
5.	Interdisciplinary research	
	気候と社会・経済システムの相互作用における重要なプロセス・部門の特定: 地球-人間システムの統合に向けたレビュー	70
	結合ライブラリ Jcup3: その思想と応用	71
	異なる空間スケールにおける岩盤河床の地形計測と地形学的文化遺産の研究のための応用	72
	北ユーラシア未来イニシアティブ (NEFI): 21世紀における全球変化に向けた挑戦と道筋	73
	ヒマラヤ西部における新生代気候とテクトニクス	74
	後期鮮新世から前期更新世における地球規模の気候変動および地域的な構造運動に関連した 日本海の微化石群集変化	75

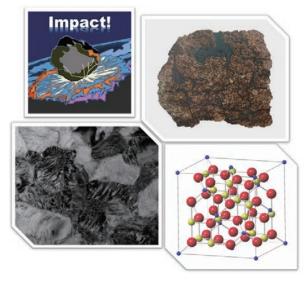
アジア・モンスーンの進化と変動,ヒマラヤ・チベット高原隆起とのリンケージの可能性	76
海洋堆積物中に分散した火山灰を定量するための地球化学的アプローチ	77
沖縄トラフにおける表層水温プロキシ(アルケノン,有孔虫 Mg/Ca,浮遊性有孔虫群集)と その古海洋学的意味合い	78
古海洋学・古気候学研究への海底テフラの利用:日本海堆積物を例として	79
鮮新世から現世までの黒潮と対馬海流の歴史:マルチプロキシーアプローチ	80

Space and planetary sciences

http://progearthplanetsci.org/index.html

Review | Space and planetary sciences

天然及び実験による高圧・衝撃で生成する地球及び地球外物質


宮原 正明, 富岡 尚敬, Luca Bindi

Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials

Miyahara M, Tomioka N, Bindi L

[Keywords] High-pressure mineral, Shock metamorphism, Meteorite, Impact crater

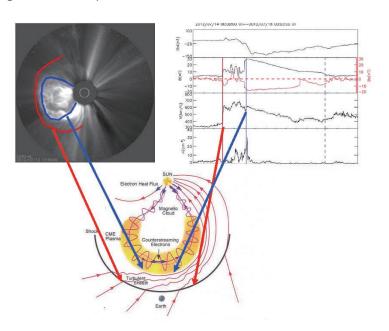
秒速数キロを超える超高速での衝突は太陽系の進化過程 において普遍的に起きている現象であり、瞬間的な超高 圧・高温状態が発生する点で特徴づけられる。そのような 極限環境下では、天体の構成要素である岩石や鉱物などに 様々な物理的・化学的変化が起きる。構成要素の1つであ る鉱物は、極限環境下でより高密度な物質である高圧相に 変化する。その高圧相は地球深部の構成物質とも考えられ ている。そのため、高圧相の結晶構造、安定圧力・温度領 域、相転移メカニズムを解明するため、高圧・高温発生装 置を用いた実験が長年行われてきている。一方、天然の高 圧相(高圧鉱物)は、超高速衝突を経験した地球や地球外 の岩石から見つかっている。鉱物学者や惑星科学者は隕石 や地球のクレーター近傍の岩石に含まれる高圧鉱物を半世 紀以上にわたり研究してきた。このレビュー論文では、ま ず高圧相を作り出す実験に関して簡単に紹介し、次に、隕 石と地球のクレーター近傍の岩石に含まれる高圧鉱物に関 する研究史を解説する。最後に、高圧鉱物から読み解くこ とができる超高速衝突現象の様々なパラメーターについて 触れる。

衝撃誘起溶融を起こした隕石と高圧鉱物

日本語原稿執筆者: 宮原 正明(広島大学 大学院先進理工系科学研究科)(敬称略)

Space and planetary sciences

地球に影響を与える太陽トランジェント現象の解明:第24太陽活動周期における進展のレビュー


Jie Zhang, Manuela Temmer, Nat Gopalswamy, Olga Malandraki, Nariaki V. Nitta, Spiros Patsourakos, Fang Shen, Bojan Vrsnak, Yuming Wang, David Webb, Mihir Desa, Karin Dissauer, Nina Dresing, Mateja Dumbovic, Xueshang Feng, Stephan Heinemann, Monica Laurenza, Noe Lugaz, Bin Zhuang

Earth-affecting Solar Transients: A Review of Progresses in Solar Cycle 24

Jie Zhang, Manuela Temmer, Nat Gopalswamy, Olga Malandraki, Nariaki V. Nitta, Spiros Patsourakos, Fang Shen, Bojan Vrsnak, Yuming Wang, David Webb, Mihir Desa, Karin Dissauer, Nina Dresing, Mateja Dumbovic, Xueshang Feng, Stephan Heinemann, Monica Laurenza, Noe Lugaz, Bin Zhuang

[Keywords] Coronal Mass Ejection, Interplanetary Coronal Mass Ejection, Solar Energetic Particle, Corotating Interaction Region, Flare, Corona, Sun, Geomagnetic Storms, Space Weather

地球に影響を与える太陽トランジェント現 象の研究が,第24太陽活動周期のほとんど を含むこの10年でどのように進展したかを レビューする。これは2014年~2018年に おける SCOSTEP/VarSITI プログラム下の ISEST (International Study of Earth-affecting Solar Transients) プロジェクトの 一環として行われた研究に基づく。本論文で 取り上げるのは、地球の宇宙空間にトラン ジェントな擾乱を直接引き起こす数分から数 日の短い時間スケールの現象である。これに は大きく分けて以下の4種類がある。(1) 太 陽フレア, (2) コロナ質量放出 (CME) と それに対応した惑星空間コロナ質量放出 (ICME), (3) 太陽高エネルギー粒子 (SEP) 現象, (4) 共回転相互作用領域 (CIR) を含むストリーム相互作用領域 (SIR)。最も際立った成果として、STEREO 探査機と太陽-地球線に沿った一連の観測機 器の組み合わせにより、太陽の多視点観測が

CME のスキマティック(中央,下)。太陽近くでの画像(左上)と地球近傍での直接測定(右上)から, CME が衝撃波・シース成分(赤)と磁気ロープ成分(青)で構成されているのが理解できる。

初めて可能になったことが挙げられる。これにより、CMEの大きさ、速度、伝播方向、形態を、3次元的に、かつ太陽圏の広い範囲で、より正確に測定できるようになった。多くの CME、特に高速の CME で、衝撃波と噴出物による 2つのフロントと3部構造(明るい噴出物フロント、暗い空洞、明るい核)を明確に識別できるようになった。太陽から1 AU の距離における CME の到着時間を予測するために、抗力に基いた運動学モデルだけでなく、いくつかの先進的な MHD モデルも開発され、CME の発生から太陽圏での伝搬の現実的なシミュレーションが可能になった。また、ステルス CME や起源不明の ICME など、簡単でないトランジェントの詳細な運動学的・力学的な振る舞いについても多くの知見を得ることができた。SEP に関する理解も大幅に向上した。本稿のまとめとして、地球に影響を与える太陽トランジェント現象研究に関して、今後の見通しを議論する。

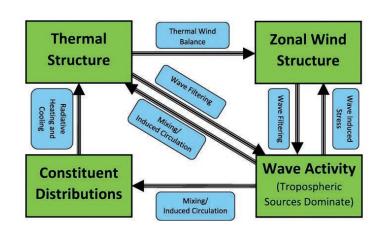
日本語原稿執筆者: Nariaki V. Nitta (Lockheed Martin Solar and Astrophysics Laboratory)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

地球気候における太陽と中層大気/熱圏/電離圏の役割(ROSMIC): これまでの進展と今後の 展開


William Ward, Annika Seppälä, Erdal Yiğit, 中村 卓司, Claudia Stolle, Jan Laštovička, Thomas N. Woods, 富川 喜弘, Franz-Josef Lübken, Stanley C. Solomon, Daniel R. Marsh, Bernd Funke, Duggirala Pallamraiu

Role Of the Sun and the Middle atmosphere / thermosphere / ionosphere In Climate (ROSMIC): a retrospective and prospective view

Ward W, Seppälä A, Yiğit E, Nakamura T, Stolle C, Laštovička J, Woods TN, Tomikawa Y, Lübken FJ, Solomon SC, Marsh DR, Funke B, Pallamraju D

[Keywords] Climate, Atmosphere, Middle atmosphere, Thermosphere, Ionosphere, Solar irradiance, Energetic particles, Atmospheric coupling, Trends

太陽からのエネルギー流入(地球の主要なエネルギー源)に関する知識は太陽地球系システムを理解するうえで重要であるが、同様に重要なのは、地球がこのエネルギーを受け入れ、再放出することでどのように準平衡状態を実現するかを知ることである。ROSMICプロジェクト(2014-2018年を含む)は、SCOSTEP(太陽地球系物理学科学委員会)の Variability of the Sun and Its Terrestrial Impact(Var-SITI)プログラムの1構成要素として、太陽地球系システムにおける地球側の研究を支援してきた。ROSMICの下には、気候に対する太陽活動の影響、力学的大気上下結合、MLT(中間圏/下部熱圏)の気候トレンド、および熱圏にお

中層大気中の大規模場の各要素の関係を示す模式図。緑が構成要素, 青が物理プロセス。矢印は影響を与える向きを示す。

ける気候トレンドと太陽活動の影響という4つのテーマが設定されている。VarSITI プログラムの実施中、4つのテーマすべてにおいて科学的な進展がみられた。これには、(1) 光化学的に生成された化学種の熱圏から下層大気への輸送、(2) 下層大気で生成された大気波動が上方に伝播して中間圏/熱圏/電離圏の風速や力学的変動、微量成分の輸送に影響するメカニズム、(3) MLT における長期的気候トレンドの特徴、および(4) 熱圏で起こっている気候トレンドおよび構造的変化、に関する理解の向上が含まれる。ここでは、過去5年間のこれら4つの分野における進展をレビューし、今後予想されるこれらの分野における研究の方向性を要約する。また、太陽地球系システムの中の地球側の構造を維持するために必要な物理的要素についても記述する。今後の地球上での人間活動を維持・発展させていくためには、地球大気の変化(例えば、人為的影響の結果として現在発生している変化)や想定される太陽活動の変動が太陽地球系システムに与える影響を理解する必要がある。

日本語原稿執筆者: 冨川 喜弘 (国立極地研究所) (敬称略)

論文出版日:2021/8/18

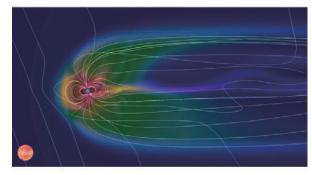
https://doi.org/10.1186/s40645-021-00433-8

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

太陽の転変と極限:理解の現状


Nandy D., Martens P.C.H., Obridko V., Dash S., Georgieva K.

Solar evolution and extrema: current state of understanding of long-term solar variability and its planetary impacts

Nandy D., Martens P.C.H., Obridko V., Dash S., Georgieva K.

[Keywords] Solar magnetic fields, Stellar evolution, Stellar flares, Stellar wind, Space weather, Space climate, Faint Young Sun paradox, Star planet interactions, Planetary evolution, Habitability

太陽などの恒星の活動は、非常に短いタイムスケールのものから恒星や惑星の進化のような非常に長いタイムスケールのものまで、そのタイムスケールは様々である。これまでの研究により、太陽フレアやコロナ質量放出などの突発現象が、地球周辺の宇宙環境または惑星大気に大きな影響を与えることがわかっている。また、恒星におけるスーパーフレアなどの極端な大規模イベントは、惑星大気の質量損失に影響を及ぼし、生命にとって適さない状態を作り出す可能性がある。太陽のような恒星が数千年から数十億年にわたってゆっくりと長期的に進化すると、恒星風の特性、放射量、宇宙線量、磁気嵐の頻度なども徐々に変

恒星風と惑星圏の相互作用

化すると考えられる。この恒星・惑星結合システムの進化は、結果的に惑星や系外惑星のハビタビリティーを決める。 SCOSTEP (Scientific Committee on Solar-Terrestrial Physics:太陽地球系物理学科学委員会)のプログラムである VarSITI (Variability of the Sun and its terrestrial impact:太陽活動変動とその地球への影響)の研究グループである SEE (Solar Evolution and Extrema:太陽の転変と極限)は、天文学および天体物理学の幅広い分野に関連する学際的なテーマである恒星・惑星結合システムの進化の理解を促進し、発展させることを目指している。このレビューでは、過去の太陽活動の再構築と理解、物理的なダイナモモデルによる太陽周期活動予測、暗い太陽のパラドックスを含む地球の歴史における太陽活動の進化の理解、太陽で起こりうる活動現象の極限の理解など、VarSITI SEE プログラムの主要テーマの成果に焦点を当てる。

日本語原稿執筆者:今田 晋亮(名古屋大学 宇宙地球環境研究所 総合解析研究部)(敬称略)

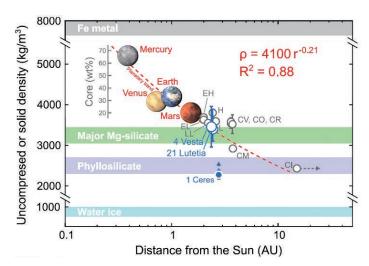
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

原始惑星系円盤磁場の地球型惑星の化学組成への寄与

William F McDonough, 吉崎 昂


Terrestrial planet compositions controlled by accretion disk magnetic field

William F McDonough, Takashi Yoshizaki

[Keywords] planetary formation, planetary composition, accretionary disk, magnetic field

地球型惑星は、金属核、ケイ酸塩層(マントルと地殻)、そして気層の、元素組成の異なる3層から成る。地球型惑星の材料物質とされているコンドライト隕石は、O、Fe、Mg、そしてSiが質量・原子数の9割超を占める一方で、各元素の比(Mg/Si、Fe/Si、Fe/Oなど)は様々な値を取ることが知られている。このような天体の全球化学組成に対して、原始惑星系円盤における天体集積や、集積後の天体衝突などの物理プロセスがいかに寄与したのかについては、不明な点が多く残されている。

本稿では、各々の地球型惑星の化学組成の推定結果に基づき、これらの天体の質量において金属核が占める割合や、天体構成物質の平均密度が、太陽からの距離に従って減少する事を示す。そして、この傾向は、原始惑星系円盤の磁場強度が太陽から離れるほど減少するモデルと

太陽系の岩石天体の密度と太陽からの距離の関係。縦軸の値は、地球型惑星は uncompressed density, コンドライト隕石は固体部分の密度, 小惑星は天体の全球密度である。

整合的である事を示す。つまり、太陽系における金属鉄の分布は、太陽からの距離に応じた酸化還元状態や空気力学的 プロセス、そして磁場強度の変化に依存しているとみられ、天体のハビタビリティに寄与している可能性がある。また、 系外惑星系においても、中心星からの距離が金属鉄分布に寄与している可能性が指摘できる。

日本語原稿執筆者: 吉崎 昂 (東北大学大学院理学研究科)(敬称略)

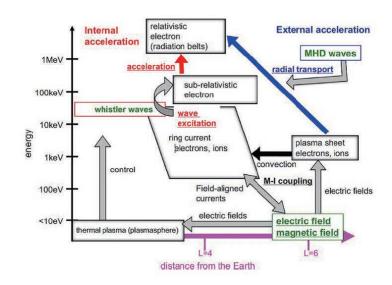
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

地球放射線帯のダイナミクス:SCOSTEP/VarSITI 期間における研究の進展

Kanekal S.. 三好 由純


Dynamics of the terrestrial radiation belts: A review of recent results during VarSITI (Variability of the Sun and Its Terrestrial Impact) era, 2014-2018

Kanekal S., Miyoshi Y.

[Keywords] Inner Magnetosphere, Energetic Particles, Plasma Waves, Wave-Particle Interactions, Radiation Belts, Plasmasphere, Ring Current

地球の周辺の宇宙空間において、地球の固有磁場が支配的な領域は磁気圏と呼ばれている。この磁気圏において地球に比較的近い領域、おおよそ静止軌道よりも内側の領域は内部磁気圏と呼ばれ、磁気圏で最も冷たいプラズマ(~1 eV以下)からもっともエネルギーが高い放射線帯粒子(MeV以上)まで6桁以上にわたるエネルギー帯のプラズマ・粒子が共存している。これらのプラズマ粒子は、内部磁気圏に存在する様々な種類のプラズマ波動との波動粒子相互作用を通した「エネルギー階層間結合」によって、ダイナミックに変化している。

SCOSTEP(Scientific Committee on Solar-Terrestrial Physics: 太陽地球系物理 学科学委員会) は 2014-2018年に VarSITI (Variability of the Sun and its terrestrial

内部磁気圏におけるエネルギー階層間結合。縦軸は地球からの距離,縦軸は プラズマ粒子のエネルギーを示す。

impact: 太陽活動変動とその地球への影響)プログラムを実施し、太陽活動変動とその地球への影響に焦点をあてた研究プログラムを展開した。その中で、SPeCIMEN(Specification and Prediction of the Coupled Inner-Magnetospheric Environment: 内部磁気圏におけるカップリング過程の理解と予測)と呼ばれる内部磁気圏に焦点をあてた研究プログラムが行われた。2010年代は、NASA/Van Allen Probes や JAXA/あらせ衛星などの新しい科学衛星による観測、地上ネットワーク観測の進展、さらには先端的なシミュレーションによって、内部磁気圏の理解が大きく進んだ。本論文では、内部磁気圏のダイナミクスのうち、特に放射線帯について VarSITI 実施期間における研究の進捗を紹介するとともに、残された課題と将来の研究の動向についても論じる。

日本語原稿執筆者:三好 由純(名古屋大学宇宙地球環境研究所)(敬称略)

Space and planetary sciences

SCOSTEP の5か年プログラム VarSITI(太陽活動変動とその地球への影響)のレビュー

塩川 和夫, Katya Georgieva

A review of the SCOSTEP's 5-year scientific program VarSITI—Variability of the Sun and Its Terrestrial Impact

Shiokawa K, Georgieva K

[Keywords] VarSITI, Variability of the Sun and its terrestrial impact, Sun, Heliosphere, Inner magnetosphere. Ionosphere, Thermosphere, Middle atmosphere, Climate change, Space weather

太陽は活動的なダイナモの天体であり、あらゆる波長の放射と太陽風プラズマを惑星間空間に放出している。地球 はこの太陽からの放射と太陽風にさらされ、その周辺の宇宙空間であるジオスペースや大気でさまざまな応答を示す。 この太陽と地球の結合過程はミリ秒から百年以上の時間スケールにわたって起きている。11年周期を示す太陽活動は、 近年の3周期では徐々に減少しつつあり,近い将来に大きな極小期を迎える可能性がある。VarSITI(Variability of the Sun and its terrestrial impact:太陽活動変動とその地球への影響)プログラムは,SCOSTEP(Scientific Committee on Solar-Terrestrial Physics: 太陽地球系物理学科学委員会)が 2014-2018年に推進した5か年プロ グラムで,この太陽活動変動とその地球への影響に焦点を当てている。この論文では,SCOSTEP の背景と過去のプ ログラム、5年間の VarSITI プログラムの達成した成果、VarSITI 後に残された重要な課題をレビューする。

日本語原稿執筆者:塩川 和夫(名古屋大学 宇宙地球環境研究所)(敬称略)

図1. VarSITI プログラムのロゴ

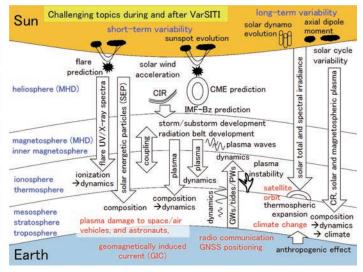
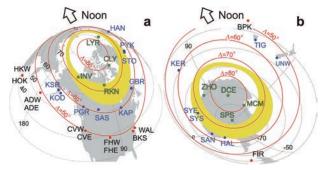


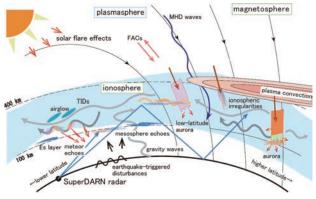

図2. VarSITI 期間中及び終了後にも残されている太陽地球系の結合過程 の重要な課題(黒)とそれらの人間活動への影響(赤)

Space and planetary sciences

中緯度 SuperDARN レーダー網の成果のレビュー


西谷望, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, Shepherd SG, Chisham G, 堀智昭, Thomas EG, Makarevich RA, Marchaudon A, Ponomarenko P, Wild JA, Milan SE, Bristow WA, Devlin J, Miller E, Greenwald RA, Ogawa T, Kikuchi T

Review of the accomplishments of Mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF Radars


Nishitani N, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, Shepherd SG, Chisham G, Hori T, Thomas EG, Makarevich RA, Marchaudon A, Ponomarenko P, Wild JA, Milan SE, Bristow WA, Devlin J, Miller E, Greenwald RA, Ogawa T, Kikuchi T

[Keywords] Mid-latitude SuperDARN, Ionosphere, Magnetosphere, Convection, Ionospheric irregularities, HF propagation analysis, Ion-neutral interactions, MHD waves

大型短波レーダーの広域観測網である Super Dual Auroral Radar Network (SuperDARN) は、短波帯 の電波を用いて電離圏プラズマの対流速度やプラズマ 密度変動の全地球的な分布を1-2分程度の高時間分解 能で提供する観測網であり、電離圏・磁気圏・超高層 大気のダイナミクスや宇宙天気の基本原理を理解する ためには必要不可欠な存在である。1995年の本格的な 運用開始以降の10年間においては、SuperDARN レー ダーは高緯度にのみに設置されており、これに従い研 究成果はオーロラ発光域を中心とする高緯度領域に限 定されていた。一方、オーロラ帯より十分低緯度側、磁 気緯度にして約50度より低緯度側にレーダーを設置す れば今まで観測できなかった領域をカバーできるよう になり、新しい研究テーマの開拓につながる可能性が 高いことが、早くから複数の研究グループにより指摘 されていた。この指摘に基づき、2005年から順次北ア メリカや日本を中心とする中緯度域に SuperDARN レーダーが設置され始め、現在では南北両半球合あわ せて10数基の中緯度 SuperDARN レーダーが継続的に 観測を実施している。本レビュー論文においては, 2017年1月に名古屋大学で開催した国際ワークショッ プにおける議論の結果に基づき、中緯度 SuperDARN レーダーを活用した最近十数年の研究成果を次の5つの 大テーマに分類してまとめている。1. 電離圏プラズマ

南北両半球における SuperDARN レーダーサイトの配置図。緑色が極冠域 SuperDARN レーダーサイト,青色がオーロラ帯 SuperDARN レーダーサイト,黒色が中緯度 SuperDARN レーダーサイトである。黄色は経験モデルに基づくオーロラ発光域の位置。

SuperDARN レーダーの観測対象となる自然現象の模式図。

対流。2. 電離圏プラズマ不規則構造。3. 短波帯電波の伝搬過程の解析。4. 電離圏プラズマ・超高層大気の相互作用。5. 磁気流体波動。加えて本論文では、今後の研究の方向についても議論を行っている。さらには、SuperDARN の基本的観測原理や中緯度 SuperDARN レーダーの経緯を中心とする過去の歴史に関する記述もあり、SuperDARN グループ外の研究者やこれからデータを使用しようとする初心者にとって教科書的な存在になりうる論文である。

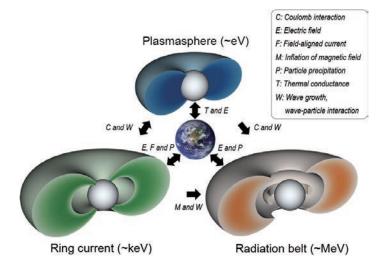
日本語原稿執筆者:西谷望(名古屋大学宇宙地球環境研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

地球近傍の宇宙空間でおこる擾乱のシミュレーション:1. 磁気嵐


海老原 祐輔

Simulation study of near-Earth space disturbances: 1. Magnetic storms

Ebihara Y.

[Keywords] Magnetic storms, Computer simulation, Magnetosphere, Ionosphere, Inner magnetosphere, and Ring current.

磁気嵐は汎地球規模でおこる地磁気の乱れである。一般に磁気嵐は2~3日間続き、大きな磁気嵐では地上の磁場が約1%減ることもある。地磁気が乱れる原因は主に地球を取り囲むように流れる赤道環電流にある。宇宙空間には電流を流しやすい導線があるわけではない。電気を帯びた粒子(荷電粒子)が空間中を動くことで電流が流れるのである。赤道環電流の場合、地球近くの宇宙空間に集まったイオンが運動することで巨大な電流を維持している。磁気嵐が発達する期間(主相)では地球近傍にイオンが多く集まり、回復する期間(回復相)ではイオンがある。こうしたイオンの消長を理解することが磁気嵐を理解することの本質であるが、複雑なイオンの運動を把握するのは難しい。そ

地球近傍の宇宙空間における領域間(宇宙空間,電離圏)結合とエネルギー階層間(プラズマ圏,赤道環電流,放射線帯)結合の模式図。

こでシミュレーションが威力を発揮する。地球磁場を双極子と見立て、磁気圏にかかる大規模な対流電場、自転する地球によって生じる共回転電場のもとでイオンの運動を追跡すると、概ね赤道環電流の発達を説明することができる。対流電場は惑星間磁場が南を向き、太陽風速度が高いときに発達する。太陽表面から放出された高温プラズマの塊(コロナ質量放出)や惑星間空間における共回転相互作用領域には強い南向きの磁場と高速太陽風が含まれていることが多い。これらの構造が地球に到来し、条件が良ければ対流電場が発達し、赤道環電流が発達することになる。一方でイオンの消失過程はよく分かっていない。中性大気との電荷交換反応でイオンが失われるためと長らく考えられていたが、消失率を計算すると赤道環電流の回復時間を説明できないことが指摘され、未解決問題となっている。

赤道環電流の興味深い点として、その能動的な役割があげられる。赤道環電流が地球近傍の宇宙空間の磁場を大きく変えることは、その一例である。磁場が変わると地球磁場に捕らえられている全ての荷電粒子の分布を大きく変えてしまう。放射線帯粒子のフラックスが一時的に減少する「赤道環電流効果」は、その顕著な例である。また、赤道環電流で閉じることができない電流は磁力線に沿って地球の電離圏(高さ数100キロメートル付近にある一部が電離した超高層大気)に流れこみ、電離圏の擾乱を引き起こす。電離圏で電流を閉じるために発生した電場は宇宙空間に伝わっていく。この電場は赤道環電流を担う荷電粒子をはじめ、地球近傍の粒子の運動を変える。本論文では、赤道環電流の発達と消失、そして赤道環電流の能動的な役割(領域間結合・エネルギー階層間結合)についてレビューする。

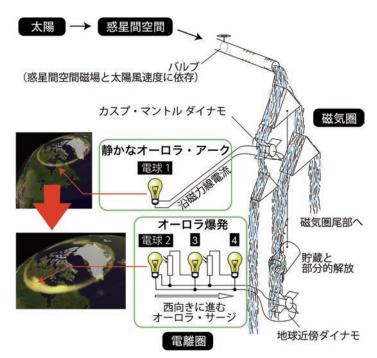
日本語原稿執筆者:海老原 祐輔(京都大学 生存圈研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

地球近傍の宇宙空間でおこる擾乱のシミュレーション:2. オーロラ・サブストーム


海老原 祐輔

Simulation study of near-Earth space disturbances: 2. Auroral substorms

Yusuke Ebihara

[Keywords] Substorm, Aurora, Computer simulation, Magnetosphere, and Ionosphere.

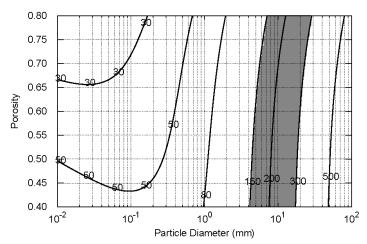
サブストームは地球近傍の宇宙空間で起こる 突発現象である。オーロラが突然明るく光り出 すオーロラ爆発や激しい地磁気の乱れを伴い, 通常1~2時間続く。地球近傍の宇宙空間(磁気 圏)では引き延ばされていた磁力線が急に縮み, 高温のプラズマが地球近くに注入されるなどの 大変動が同時に起こる。磁気圏・電離圏の状態 は一変することから, 磁気嵐や放射線帯変動を 理解する上でもサブストームは極めて重要であ る。また、地磁気の乱れは地上の送電設備に誘 導電流を流し、高温プラズマの注入は人工衛星 の帯電をもたらすことが知られており、社会に 対する影響も大きい。サブストームの究極的な 原因は太陽から吹き出すプラズマの流れ(太陽 風)や磁場であるが、サブストームが発達する 過程の全容はよく分かっておらず、宇宙空間物 理学上の大きな問題となっている。複雑なサブ ストーム現象を理解するための手段の一つとし てシミュレーションがある。特に REPPU と呼 ばれる電磁流体シミュレーションはオーロラ爆 発をはじめサブストームに伴って生じる多種多 様な変動を良く再現できることが示されている。 本論文では REPPU の計算結果を詳しく解析す ることによって得られたオーロラ・サブストー ムの一連の発達過程と惑星間空間から地球に至 るエネルギーの流れについてレビューする。

オーロラ・サブストームの発達過程を示す模式図。惑星間空間磁場が南を向くと上部のバルブが開き、太陽起源のエネルギーが流入する。すると磁気圏の高緯度境界付近で「カスプ・マントルダイナモ(発電機)」が働き、電流を地球に向かって流し始める(沿磁力線電流)。その結果、地球では静かなオーロラ・アークが光る(電球1が点灯)。約40-60分後、磁気圏でエネルギーが部分的に解放されると「地球近傍ダイナモ」が現れ、オーロラが突然明るく光り始める(電球2が点灯)。さらに電離圏の都合によって電流が次々と流れ始め、明るいオーロラが西向きに広がっていく(電球3、4が順に点灯)。

日本語原稿執筆者:海老原 祐輔(京都大学 生存圏研究所)(敬称略)

Space and planetary sciences

はやぶさ2到着以前の小惑星リュウグウ


和田 浩二, Matthias Grott, Patrick Michel, Kevin J. Walsh, Antonella M. Barucci, Jens Biele, Jürgen Blum, Carolyn M. Ernst, Jan Thimo Grundmann, Bastian Gundlach, Axel Hagermann, Maximilian Hamm, Martin Jutzi, Myung-Jin Kim, Ekkehard Kührt, Lucille Le Corre, Guy Libourel, Roy Lichtenheldt, Alessandro Maturilli, Scott R. Messenger, 道上 達広, 宮本 英昭, Stefano Mottola, Thomas Müller, 中村 昭子, Larry R. Nittler, 小川 和律, 岡田 達明, Ernesto Palomba, 坂谷 尚哉, Stefan E. Schröder, 千秋 博紀, Driss Takir, Michael E. Zolensky and International Regolith Science Group (IRSG) in Hayabusa2 project

Asteroid Ryugu before the Hayabusa2 encounter

Wada K, Grott M, Michel P, Walsh K, Barucci A, Biele J, Blum J, Ernst C, Grundmann J, Gundlach B, Hagermann A, Hamm M, Jutzi M, Kim M, Kührt E, Le Corre L, Libourel G, Lichtenheldt R, Maturilli A, Messenger S, Michikami T, Miyamoto H, Mottola S, Müller T, Nakamura A, Nittler L, Ogawa K, Okada T, Palomba E, Sakatani N, Schröder S, Senshu H, Takir D, Zolensky M and International Regolith Science Group (IRSG) in Hayabusa2 project

[Keywords] Hayabusa2, Ryugu, Asteroids, Regolith, Physical properties

小惑星162173「リュウグウ」は、宇宙航空 研究開発機構(JAXA)主導の小惑星サンプル リターンミッション「はやぶさ2」の探査対象 天体である。はやぶさ2による探査以前の地上 観測からは、リュウグウについては直径1km以 下の地球近傍C型小惑星であるということのほ かは、極めて限られた情報しか得られていな かった。本論文は、はやぶさ2探査以前におけ る地上観測や理論モデルに基づいて、 リュウグ ウの最も確からしい物理的・力学的性質につい て、とくに試料採取にあたって重要となるリュ ウグウ表層の特徴を中心にまとめたものである。 この情報は、はやぶさ2到着以前のリュウグウ についての基準モデルをなすものであり、本論 文では、自転軸やスペクトル情報などの全球的 性質、熱慣性などの表層熱物理的性質、空隙率 や強度などの表層力学的性質、にわけてそれぞ

レゴリス層の代表的粒径と空隙率の関数として表示した熱慣性(単位:J m $^{-2}$ s $^{-1/2}$ K $^{-1}$)の等高線マップ(計算上仮定したパラメータセットについては本文参照)。灰色の領域は、地上観測(Müller et al. 2017)から推定されたリュウグウの熱慣性の範囲を示す。この図からリュウグウのレゴリス層の代表的粒径を推定することが可能となる。

れ観測値・導出値・予測値を記述している。この基準モデルは探査運用計画の策定に役立つほか、はやぶさ2で得られるデータをより適切に解釈しリュウグウをはじめとした小天体についての科学的研究を促進し、小天体から探る太陽系進化の理解に貢献するものである。 なお、はやぶさ2の探査によって本論文の価値が失われるものではない。本論文は、C型小惑星一般について現状の理解を整理したものとも言える。結果的に、はやぶさ2の成果をより鮮明にすることのほか、将来の小天体探査を計画するにあたっておおいに参考となるであろう。

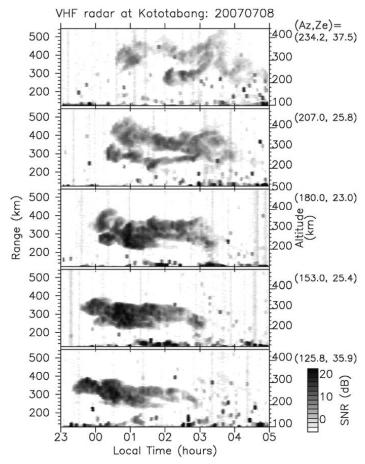
日本語原稿執筆者:和田 浩二(千葉工業大学 惑星探査研究センター)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

赤道及び低緯度における真夜中過ぎ電離圏擾乱の発生機構に関するレビュー


大塚 雄一

Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere

Otsuka Y

[Keywords] Equatorial ionosphere, Ionospheric irregularity, Rayleigh-Taylor instability, Plasma bubble

地球の磁場が水平になる赤道域では、赤道電 離圏特有の不安定現象が起こる。その一つとし て. 局所的に電離圏プラズマが著しく減少する プラズマバブルと呼ばれる現象があげられる。 プラズマバブルの内部にはプラズマの粗密構造 ができるため、プラズマバブル内を通る電波は 影響を受ける。例えば、GPSを使った衛星測位 には位置誤差をもたらし、衛星通信・放送に対 して受信障害を引き起こす。このため、これま で観測的、理論的に多くの研究がなされ、プラ ズマバブルは日没線が地球の磁力線と平行にな る季節(地球磁場の偏角が小さいアジア域では, 春と秋)の日没直後に頻繁に発生することが明 らかにされている。また、プラズマバブルの発 生は、太陽活動にも依存しており、太陽活動が 活発な時ほど発生頻度が高いことも知られてい る。しかし、近年のインドネシアや、インド、 ブラジルでのレーダー観測や, 電離圏を飛翔す る人工衛星によって, 従来から知られていたプ ラズマバブルの発生時期とは異なり, 太陽活動 極小期において、北半球の夏季の真夜中過ぎに、 プラズマバブルに起因すると考えられる電離圏 擾乱が頻繁に観測されることが明らかになった。 プラズマバブルが発生するためには.(1)電離 圏の状態が不安定を成長させる状態にあること, (2) 不安定が成長するための"タネ"になる初

インドネシアに設置された VHF レーダーで,2007年8月21日晩に観測された F 領域沿磁力線不規則構造 (FAI) エコーのレンジ・時間断面図 (Otsuka et al. 2009 より)。

期変動が存在すること,が必要である。(1) については,真夜中に熱圏温度が上昇する現象に伴う極向きの熱圏風が電離圏プラズマを高高度に持ち上げることにより,電離圏が不安定な状態になることが有力視されている。(2) に関しては,熱帯の活発な対流活動により生じた大気波動が上方伝搬し,電離圏プラズマの変動を作ると考えられている。本論文では,真夜中過ぎに出現する電離圏擾乱に関する観測的研究を中心にレビューし,プラズマバブルが真夜中過ぎに発生する機構について議論する。

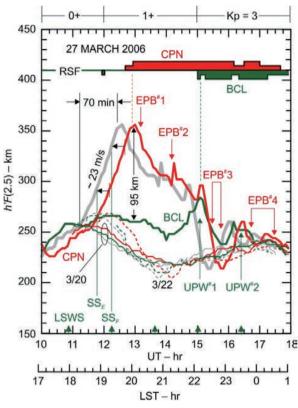
日本語原稿執筆者:大塚 雄一(名古屋大学 宇宙地球環境研究所)(敬称略)

Space and planetary sciences

日没後の赤道電離圏 F 領域高度上昇ーそれとも上昇流の成長か?

Tsunoda R T, 齋藤 享, Nguyen T T

Post-sunset rise of equatorial F layer - or upwelling growth?


Tsunoda R T, Saito S, Nguyen T T

[Keywords] Equatorial plasma bubbles, Equatorial spread F, Day-to-day variability, Post-sunset rise of equatorial F layer, Large-scale wave structure, Upwelling paradigm, Upwelling growth, Pre-reversal enhancement, Electric field, Equatorial ionosphere

赤道プラズマバブル(equatorial plasma bubble: EPB)発生過程には、大きく分けて2つの考え方がある。一つは、日没後の赤道電離圏F領域高度上昇(post-sunset rise: PSSR)が EPB(赤道スプレッド F(ESF)とも言われる)に直結すると考える PSSR-to-ESF パラダイムである。もう一つは、局所的なプラズマ上昇流の中から EPB が発生すると考えるプラズマ上昇流パラダイム("upwelling paradigm")である。EPB 発生の日々変動を説明するためには、プラズマ上昇流パラダイムの方が優っていることが知られている。

プラズマ上昇流パラダイムでは、EPBの発生は以下のステップで起こると考えられている。(1) 電離圏 F 領域下部に東西幅400km 程度の局所的な上昇流が発生、(2) PSSR(訳者注:東西2000km 程度の範囲で起こると考えられている)に伴うプラズマ交換不安定性(interchange instability)によって局所的上昇流がさらに発達、(3) PSSRの終わりごろに上昇流中から EPB が発生。EPB 発生に至るこのような描像では、やはり PSSR が上昇流の成長の強さを決める主な駆動源であると考えられる。

この考え方は、太陽活動が高く PSSR が強い場合の EPB 発生をよく説明するが、太陽活動が低く PSSR が弱い場合の EPB 発生を説明することには困難がある。本研究では、太陽活動が低く PSSR が弱い場合において、局所的上昇流の強さが、強い PSSR の F 領域高度上昇と同等レベルになり、局所的な上昇流自体が EPB 発生を駆動できることを初めて示した。上昇流領域の外では EPB が発生しないことを考えると、これまでの主流の考え方と異なり、EPB 発生の主な駆動源は PSSR ではなく局所的上昇流であるということになる。 EPB 発達過程のさらなる理解のためには、局所的上昇流を引き起こす物理過程、特に PSSR が弱い場合の上昇流発生過程を解明することが必須であり、介在する複雑な物理過程の理解を進めていく必要がある。

EPB が発生しなかった2日(2006年3月20,22日,細線),及び発生した1日(2006年3月27日,太線)の,磁気赤道付近で東西に約700km 離れた $2 ext{r}$ 所(Bac Lieu(9.3° N, 105.7° E, 緑線),Chumphon(10.7° N, 99.4° E, 赤線))において,イオノグラムから測定した電離圏仮想高度(2.5MHz におけるh'F)の時間(UT)変化。灰色線は Chumphon のh'F を現地の地方時に対して示したもの。イオノグラムにおけるレンジタイプ ESF(RSF)の時間(UT)変化(強さ2段階)を同時に示す。なお2006年の太陽黒点数平均値は15.2であり,太陽活動は低かった。EPB が発生しなかった日には両地点でのh'F変動はほぼ同じであったが,EPB 発生日には両地点でのh'F変動に大きな差があることがわかる。

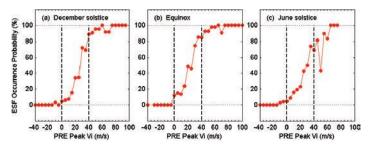
日本語原稿執筆者:齋藤 享(国立研究開発法人 海上・港湾・航空技術研究所 電子航法研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

赤道スプレッドF生成に対する日没後の鉛直プラズマ・ドリフト速度の影響


Chao-Song Huang

Effects of the postsunset vertical plasma drift on the generation of equatorial spread F

Chao-Song Huang

[Keywords] Equatorial ionosphere, Equatorial spread F, Plasma bubbles, Rayleigh-Taylor instability, Vertical plasma drift, Prereversal enhancement

"赤道スプレッド F (ESF)"とは、赤道電離 圏において発生するプラズマ密度の擾乱であり、局所的にプラズマ密度が減少する "プラズマバブル"とよばれる現象に伴って発生する。プラズマバブルは、プラズマ不安定の一種であるレーリー・テーラー不安定の非線形発展によって生成される。日没時における上向きプラズマ・ドリフト速度の増大(PRE)は、電離圏 F 領域におけるプラズマを高高度に押し上げ、より不安定な状況を生み出すことから、プラズマ

2008年5月から2013年6月までの間に C/NOFS 衛星によって得られた鉛 直プラズマ・ドリフト速度 (PRE) の大きさとプラズマバブル発生確率の関係。異なる季節のものを示す。

バブルの発生を決定づける重要な要因となっている。ESF は電離圏を透過する電波を使用する衛星放送や通信,GPS をはじめとする全球測位衛星システムにも悪影響を及ぼすため,ESF 発生を決定する要因について多くの研究がなされてきた。特に,ESF 発生に対する PRE の依存性を定量的に理解しようとする研究がなされ,ESF 発生と PRE との 関係について次の3つの考え方が示されてきた。(1) ESF が発生するためには,PRE があるしきい値に達する必要がある。PRE がそのしきい値より大きい場合は ESF が生成され,PRE がしきい値よりも小さい場合には生成されない。(2) ESF の発生確率は,PRE の大きさに応じてほぼ線形に増大する。(3) ESF の発生確率は,PRE の大きさの関数として連続分布する。上記の(2)及び(3)の関係は,PRE の大きさにより,ESF の発生確率を決定することが可能であることを意味している。本稿では,これらの関係をレビューし,これらの関係がどのように相互に関連しているかについて述べる。また,ESF の発生及び,その全球分布に対して,プラズマ不安定を起こすきっかけとなる"タネ"がどのような影響を及ぼすかについても述べる。

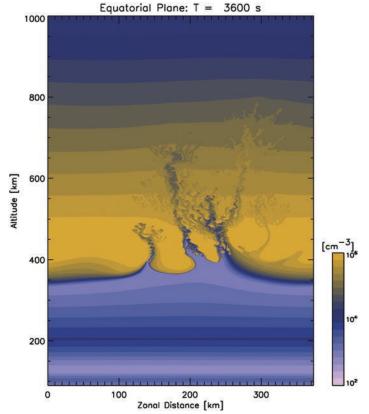
日本語原稿執筆者:大塚 雄一(名古屋大学 宇宙地球環境研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

シンチレーション評価と予測に向けた赤道電離圏プラズマバブルの数値シミュレーション研究に 関するレビュー


横山 竜宏

A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting

Yokoyama T

[Keywords] Equatorial ionosphere, Equatorial spread F, Equatorial plasma bubbles, Numerical simulation, Scintillation, High-performance computing, Space weather

地球電離圏は、下層大気と宇宙空間を繋ぐ遷 移領域であると同時に衛星電波が遅延等の影響 を受ける伝搬経路でもある。GPS等を利用した 高精度、高信頼度の航法、測位が実用化されつ つあり、電離圏による電波遅延の影響は大きな 誤差の要因となる。特に、局所的なプラズマ密 度の不規則構造を伴う電離圏擾乱が発生した場 合には、電波の振幅、位相の急激な変動(シン チレーション)が生じるため、GPS等による電 子航法に深刻な障害を及ぼす。このような電離 圏擾乱の発生機構を解明し, 発生を事前に予測 することが、科学・実用の両面から求められて いる。赤道電離圏で発生するプラズマバブルと 呼ばれる現象は、深刻なシンチレーションを引 き起こす原因として知られているが、その発生 機構については未だ未解明な部分が多く、特に 発生の予測は非常に難しい。プラズマバブルに 伴う電離圏擾乱の空間スケールは、数千kmに わたる地球規模の変動から、1m以下の微細な 変動にまでわたっている。GPSで利用されてい る周波数帯(約1.2-1.5GHz)では,300-400m スケールの不規則構造によるフレネル回

赤道プラズマバブルの数値シミュレーション結果の一例

折によって干渉し、地上において振幅と位相が激しく変動する。このような数百mスケールの構造は、電離圏内で直接形成されるわけではなく、それよりも大スケールの構造が、ある種のプラズマ不安定を起源としてまず形成され、そこから非線形過程を経て小スケールの構造に至ると考えられている。このような幅広いスケールにわたる現象を解明するためには、数値シミュレーションを用いた研究が必要不可欠である。近年の計算機性能の進歩により、数百kmスケールの大規模構造とシンチレーションを引き起こす数百mスケールの微細構造を、同一モデル内でコンシステントに再現できる可能性が高まってきた。本レビューでは、過去40年間の数値シミュレーションによるプラズマバブル研究の発展を概観し、シンチレーションの発生予測に向けたシミュレーション研究の最前線について紹介する。

日本語原稿執筆者:横山 竜宏(情報通信研究機構 電磁波研究所 宇宙環境研究室)(敬称略)

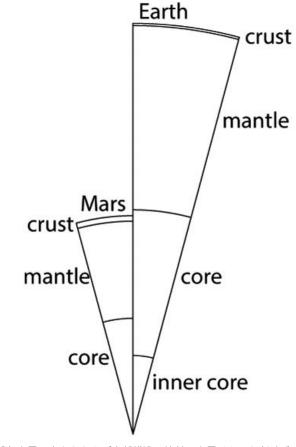
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

火星のコアの構造一簡潔なレビューと InSight に期待される新たな知見一

Helffrich G


Mars core structure — concise review and anticipated insights from InSight

Helffrich G

[Keywords] Mars, InSight, Dynamo, Core, Fe-FeS phase relations, Stratification

本論では、現在の火星の内部構造、組成に関 する知見とその組成から予想される地震学的性 質についてレビューする。特にここでは、火星 の核について注目する。その理由は、硫黄に富 む硫化鉄の相図中の液相線(リキダス)の中間 圧力(数10GPA)における特異な性質に起因す る。過去の実験結果から得られた詳細な相図か ら, 火星の核内部では, 二つの異なる現象が起 こりうると考えられる。ひとつは、核上部の核 - マントル境界から晶出した鉄が雪のように沈 殿する iron "snow" と呼ばれる現象であり, もうひとつは、核の底から立ち上る Fe_{3-x}S₂ の 霧 "ground fog" である。これらの現象は、温 度と硫黄の含有量に応じて, 内核もしくは外核, あるいは両方に, 硫黄に富む層を形成する。核 内の層構造はなぜ火星の磁場が惑星の歴史の初 期に消失したかを説明できると考えられ、ここ ではその方法について議論する。核内の結晶化 過程は将来の火星地物探査ミッションである InSight が取得する地震データで観測できる可 能性がある。そのためには核の大きさ、内核の 有無,組成の変化の指標となる外核内の放射方 向の地震波速度構造が鍵となる観測量である。

日本語原稿執筆者:川村 太一(国立天文台) (敬称略)

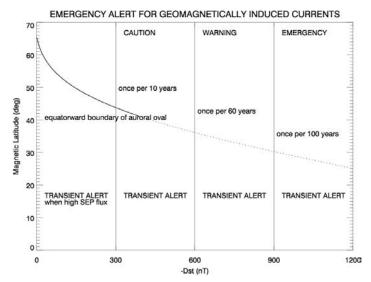
地球と火星の大きさおよび内部構造の比較。火星はちょうど地球の半分程度の大きさであるが地殻が薄く (Rivoldini et al., 2011), おそらく内核が存在しないと考えられている。

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

極端地磁気誘導電流のレビュー


片岡 龍峰, Ngwira C

Extreme geomagnetically induced currents

Kataoka R, Ngwira C

[Keywords] Geomagnetically induced currents, Magnetic storms, Auroral substorms, Sudden commencements, Solar energetic particles

大振幅の地上磁場変動 dB/dt に関する関連論文のレビューを行い,観測された極端な dB/dt の値や太陽風パラメタ,理論的な dB/dt の上限値などに基づいて,地磁気誘導電流の警報フレームワークを提案する。大振幅 dB/dt は,遅い環電流(RC型),速いオーロラ電流(AE型),過渡的な急始(SC型)の3種類に分類できる。磁気嵐の発達を表す Dst 指数で -300, -600, -900nT と大規模になるにつれて注意報,警報,緊急警報というレベルを設定することで,それぞれの AE型 dB/dt の上限値は,2000, 4000, 6000nT/min となる。太陽プロトン現象の発生時は,Dst 指数によらず SC型 dB/dt の過渡警報が設定され,その上限値は低緯度で40nT/s,高緯度で110nT/s となる。

地磁気誘導電流の警報フレームワーク

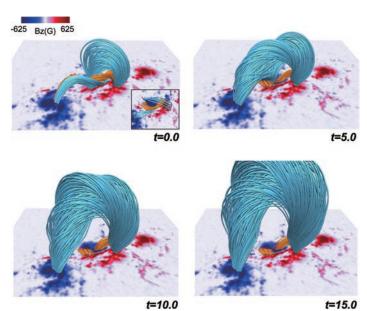
日本語原稿執筆者:片岡 龍峰(国立極地研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

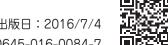
光球面磁場に基づいた太陽コロナ磁場と太陽プラズマ噴出現象の電磁流体モデリング


井上 諭

Magnetohydrodynamics Modeling of Coronal Magnetic Field and Solar Eruptions Based on the **Photospheric Magnetic Field**

Inoue S

[Keywords] Sun, Magnetic Field, Photosphere, Corona, Magnetohydrodynamics (MHD), Solar Active Region, Solar Flare, Coronal Mass Ejection (CME)


近年の太陽観測衛星による高精度な太陽観測 により、太陽大気「コロナ」で生じている活動 現象が鮮明に映し出されるようになった。太陽 は「磁化した」星であり、コロナ中での活動現 象は磁場に担われていると考えられている。中 でも,太陽表面の爆発現象である「太陽フレア」 を伴う太陽プラズマの噴出現象 (solar eruption)は、それらを代表する激しい活動現象の 一つである。Solar eruption の中には、コロナ 質量放出 (CME) として惑星間空間にまで放出 され、地球にまで到達する。CME が地球に到 達すると、地球周辺の宇宙空間「ジオスペース」 の電磁環境が荒らされる「宇宙嵐」が発生する ので、solar eruption の発生機構やそのダイナ ミクスを理解することは、太陽と地球の関係を 理解する上でも極めて重要となる。本論文は、 過去2~3年の間に実施されてきた solar eruption の数値もモデリング,特に観測磁場データ を取り込んだ電磁流体力学(MHD)モデリング についてレビューする。近年の太陽観測衛星,

2011年2月15日に活動領域11158において、X2.2クラス太陽フレアが起 きた際の磁場のダイナミクス。橙色の磁力線は初期(t=0)に強くねじれ ていた磁力線を表しており、水色の磁力線は強くねじれた磁力線を囲んで いる磁力線である。最終的に、これらの磁力線が磁気リコネクションを介 すことで, 巨大な磁束管構造を形成する。

地上望遠鏡の高精度観測により,精度の良い磁場が観測されているが,最新の技術を用いても観測上の問題から,太 陽の表面である光球面上でしか磁場を測定できない。そこでまず,太陽コロナ中での3次元の磁場構造を見出すため に、光球面の磁場を境界条件として、上空の磁場を数値的に外挿しなければならない。外挿方法は多く提案されてお り、本論文ではエネルギーを解放するための自由エネルギーを持ち合わせていないが、容易に外挿できるポテンシャ ル磁場から,solar eruption を引き起こすようなエネルギーが蓄積された磁場構造「force-free 磁場」を外挿する方 法まで解説する。さらに、ここ数年の間に盛んに実施されるようになった、フレア発生前に外挿された3次元磁場を 用いた安定性解析の結果についてもレビューする。最後に、外挿された磁場、特にフォースフリー磁場を初期条件と した電磁流体シミュレーションも実施され始めているので、それらの最新の結果もレビューする。

日本語原稿執筆者:井上 諭(マックスプランク太陽系研究所)(敬称略)

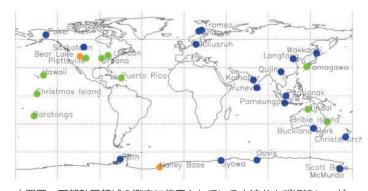
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

高度50-110km 領域の力学と構造の研究のための中波および短波レーダー技術のレビュー

Reid I M


MF and HF radar techniques for investigating the dynamics and structure of the 50 to 110 km height region: a review

Reid I M

[Keywords] Medium-frequency radar techniques, High-frequency radar techniques, Partial reflection radar, Spaced antenna technique, Full correlation analysis, Mesosphere lower thermosphere region, D region, MLT region dynamics, Meteor radar, Imaging Doppler interferometer

中波 (MF) や短波 (HF) の分反射エコーを 利用した上層の中性大気観測手法は、同種の観 測手法の中でも最も古い技術の一つであり、現 在でも広く使用されている。その観測技術には 常に改良が加えられており、信頼性の高い方法 として中間圏から下部熱圏領域(50-110km) における風速、乱流強度、電子密度、大気の構 造などの観測に使用されている。本論文では、 最近の進展についてレビューし、本手法の利点 と弱点について議論するとともに、今後の改良 について考察する。

日本語原稿執筆者:堤雅基(国立極地研究所) (敬称略)

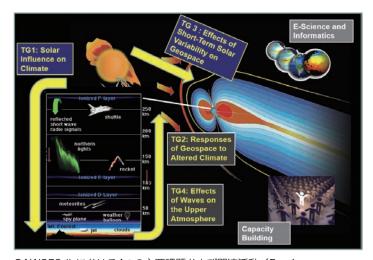
中間圏・下部熱圏領域の測定に使用されている中波および短波レーダー。 緑色は現在は使用されていないレーダー,青は現在も使用されているレー ダーを示す。黄色はIDI技術を使用しているダイナソンデを示す。詳細は, 本文および表2と3を参照。

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

太陽地球結合系の気候・天気に関する国際共同研究プロジェクト(CAWSES II)の総括


津田 敏隆, Shepherd M G, Gopalswamy N

Advancing the understanding of the Sun-Earth interaction - the Climate and Weather of the Sun-Earth System (CAWSES) II Program

Tsuda T, Shepherd M G, Gopalswamy N

[Keywords] Coupled solar-terrestrial system, Solar activity, Space weather, Geospace, Atmospheric coupling, Trends, Global warming, Paleoclimatology

ICSU傘下の太陽地球系科学国際委員会(The Scientific Committee on Solar-Terrestrial Physics: SCOSTEP)は国際共同研究プロジェクトとして「太陽地球結合系の気候・天気(Climate and Weather of the Sun-Earth System: CAWSES)」」を2004-2008年に実施した。さらに、その成果を発展させるべく、第2期後継プロジェクトとして CAWSES II を2009~2013年に実施した。CAWSESでは太陽活動の短期および長期変動が地球に与える影響に着目し、太陽から地球へのエネルギーの流入過程と地球周辺大気および磁気圏の応答を統合的に明らかにすることを主題としている。とりわけ、CAWSES II では未解明の課題(タスク)として、(1)太陽活動が地球の気候変動に

CAWSES II における4つの主要課題および関連活動 (E-science, capacity building)

与える影響,(2)地球環境変化に対する超高層大気の応答,(3)太陽の短期的変動が地球周辺の大気環境に与える影響,(4)下層大気から上方へのエネルギー輸送に対する超高層大気の応答,の4つを取り上げ,これらの課題を解明すべく国際共同研究を展開した。同時に,E-science とキャパシティビルディングにも重点的に取り組んだ。上記の4課題およびE-science を主導した研究リーダーが過去5年間の成果をまとめたレビュー論文がPEPSの CAWSES II article collection に公表された。本論文はこれらの5件のレビュー論文を基礎に,CAWSES II の研究成果を総括している。

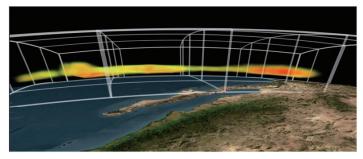
日本語原稿執筆者:津田 敏隆(京都大学 生存圈研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

次世代欧州非干渉散乱レーダー(EISCAT_3D)のサイエンスケース


McCrea I, Aikio A, Alfonsi L, Belova E, Buchert S, Clilverd M, Engler N, Gustavsson B, Heinselman C, Kero J, Kosch M, Lamy H, Leyser T, 小川 泰信, Oksavik K, Pellinen-Wannberg A, Pitout F, Rapp M, Stanislawska I, Vierinen J

The science case for the EISCAT_3D radar

McCrea I, Aikio A, Alfonsi L, Belova E, Buchert S, Clilverd M, Engler N, Gustavsson B, Heinselman C, Kero J, Kosch M, Lamy H, Leyser T, Ogawa Y, Oksavik K, Pellinen-Wannberg A, Pitout F, Rapp M, Stanislawska I, Vierinen J

[Keywords] EISCAT, EISCAT_3D, Radar, Incoherent scatter, Atmospheric science, Space physics, Plasma physics, Solar system research, Space weather, Radar techniques

欧州非干渉散乱(EISCAT) 科学協会は、高 緯度のさまざまな超高層大気研究に利用可能な 非干渉散乱(IS) レーダー施設を、スカンジナ ビア半島北部とスパールバルの2ヶ所に設置し、 運用してきた。そのうち、1980年代初めにスカ ンジナビア半島北部に設置された IS レーダー は、30年上前の技術に基づいているため、より フレキシブルな観測装置を追加装備することが、 現在求められている。特に、対流圏から電離圏 上部までの広い高度領域において、3次元かつ

スカンジナビア半島上空の電離圏を EISCAT_3D レーダーで立体観測した ときの想像図(EISCAT 科学協会提供)

立体的に物理量が得られることや、連続観測が可能であることが不可欠な条件として挙げられる。

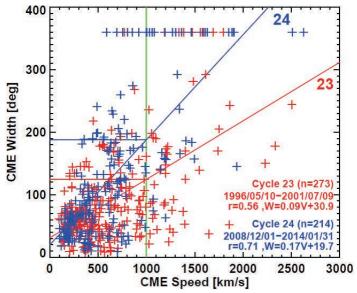
そのような世界をリードする IS レーダー施設を利用して、将来の科学研究を促進するための新たなレーダーシステム計画(EISCAT_3D)の検討が進められた。まず2005~2009年にデザインスタディを行い、その後2010~2014年に準備フェーズのプロジェクトを実施した。これらは欧州連合(EU)の大型研究枠組み計画(FP-6および FP-7)による資金提供を受けて進められ、今後2020年代初頭に EISCAT_3D レーダーの第1段階の稼働を目指している。この新たなレーダー施設では、フェーズドアレイ方式と、高度なソフトウェアおよびデータ処理技術を用いる。この種の"ソフトウェア・レーダー"は、世界中の IS レーダー観測施設の草分けということができる。このレーダー施設は、EISCAT_3D 科学コミュニティから集められた多くの科学課題の解決に役立つだけでなく、宇宙天気に関連する諸問題や人工衛星利用などの宇宙技術に依存する現代社会に対しても有益である。このレーダーは、オーロラオーバル内かつ成層圏極渦の端に位置するため、大気の長期変動や地球規模の大気変動の研究にも最適である。

本論文は、EISCAT_3D 準備フェーズプロジェクトの一環で作成した、EISCAT_3D のサイエンスケースの要約版である。本論文は、EISCAT ユーザーコミュニティから選抜した3つの国際サイエンスワーキンググループによって執筆された。本論文の共著者として記載したワーキンググループメンバーに加え、多くの EISCAT 科学コミュニティメンバーによるディスカッションやサポートなどの貢献に感謝する。

日本語原稿執筆者:小川 泰信(国立極地研究所)(敬称略)

Space and planetary sciences

太陽地球システムの短期変動: CAWSES-II 期間に得られた成果の概略


Gopalswamy N. Tsurutani B. Yihua Y

Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

Gopalswamy N, Tsurutani B, Yihua Y

[Keywords] Solar activity, Space weather, Coronal mass ejections, Flares, Solar energetic particle events, Geospace impact, Geomagnetic storms

この論文では,太陽活動の短期変動と,それ が地球周辺の宇宙環境にどのように影響を与え ているかについて、CAWSES-II 期間中に得ら れた成果を概観する。太陽活動が第24太陽活動 周期の極大に向けて上昇していく期間における 太陽地球系システムの振る舞いを調べるために、 CAWSES-II が計画された。第23太陽活動周期 に続いた非常に深い極小期の後、大変小さい第 24周期の極大 (MiniMax24) に向けて太陽活 動は上昇していった。その結果、ここで示され る結果の多くは、第23期に比べて第24期の活動 度が弱いという点に関連している。地球とその 周辺の宇宙空間であるジオスペースに即座に影 響を与える太陽の短期変動は,閉じた磁力線か ら発生する太陽爆発と、コロナホールからの高 速太陽風である。太陽爆発からは、電磁的な放 射である太陽フレアと、物質の放射であるコロ ナ質量放出(CMEs)の両者が発生する。一方 でコロナホールからは高速の太陽風が流れ出し、 それが前を行く遅い太陽風と衝突することに よって, 太陽の自転と同期した相互作用領域

第23と24太陽活動期における CMEs の速度と大きさの相関図。どちらの活動周期も速度と大きさは良い相関を示すが、その傾きは大きく異なっており、第24太陽極大期の方が CMEs の大きさが大きいことがわかる。これは、弱い太陽活動期のために惑星間空間の圧力が第24太陽活動期の方が小さく、その結果、CMEs の大きさが大きいまま保たれていると考えられる。360度のデータ点はハロー CMEs で、その大部分が第24期であることもわかる。

(CIRs)を形成する。高速の CMEs は、その前面の衝撃波が高エネルギープラズマ粒子を加速し、大きな磁気嵐を引き起こすことで地球に影響を与える。一方で CIRs とそれに伴う高速太陽風(HSSs)は、回帰性の小規模な磁気嵐を引き起こすと共に、何日間も長く続くオーロラ活動も伴う。 CIRs は磁気圏で相対論的電子(キラー電子)の加速も引き起こす。弱い太陽活動期の大きな特徴の一つは、背景となる惑星間空間である太陽圏が強い太陽活動期の時とは異なる状態にあるために、CMEs による衝撃波形成や磁気嵐誘因において重大な違いがある点である。最後に、2012年7月23日に太陽の裏側で発生した巨大宇宙嵐イベントによる極端宇宙天気現象について議論する。これらの研究の多くは、太陽と地球を結んだ線の上の鍵となる複数の点において直接またはリモートセンシングによる観測データが同時に取得できるようになったことにより、得られた成果である。

日本語原稿執筆者:塩川 和夫(名古屋大学 太陽地球環境研究所)(敬称略)

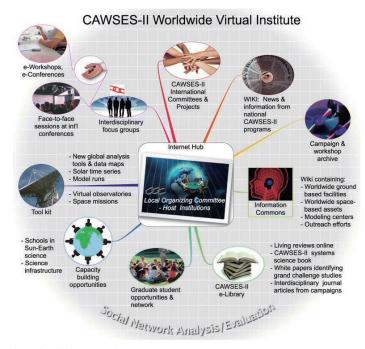
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

国際研究計画のための e サイエンスと情報学

Fox P, Kozyra J


eScience and Informatics for International Science Programs

Fox P, Kozyra J

[Keywords] eScience, Informatics, Virtual observatory, Virtual organization, Collaboration, Interdisciplinary research

e サイエンスおよび情報学は、その概念的ア プローチ, 方法, 現状の技術による問題解決手 段として、多くの科学分野にとってまだまだ新 しいアプローチといえる。全体としては、これ らは電子的手段による科学研究(すなわちeサ イエンス)を,多くの情報学関連分野(例えば, 太陽情報学、地球情報学、気候情報学、など) から得た理解をもとに、さらに推し進めている。 CAWSES-II (Climate and Weather of the Sun-Earth System II) の e サイエンスおよび 情報学の活動の目標は、国際バーチャル・イン スティテュートの推進やバーチャル観測所を推 進することにあった。これにより,CAWSES-II の4つのタスク・グループの方向性に沿った研 究が、いわば「システムレベル」で進展するこ とが期待された。

本稿では、現在の科学データに関する状況を 把握したうえで、バーチャル組織としての CAWSES-II 計画へ適用可能な e サイエンスお よび情報学において、特に重要な要素について

知の協調的発展・生成のための、CAWSES II 計画におけるバーチャル・インスティテュートのコンセプト

述べる。CAWSES-II において何が活用されたか、また、成功事例やそのチャレンジについて検証する。こうした活動や他の国際的コミュニティから学んだことに基づき、小規模な共同研究から大規模な国際共同計画まで関係するような、現状の報告を行う。大規模な国際共同計画、とくに CAWSES-II の後継となるような計画(例えば VarSITI; Variability of the Sun and Its Terrestrial Impact)では、現代の情報技術を用いて推進されている「科学のネットワーク化」の面がこれまでよりもさらに強化されていると考えられる。

日本語原稿執筆者:村山 泰啓(情報通信研究機構 統合データシステム研究開発室)(敬称略)

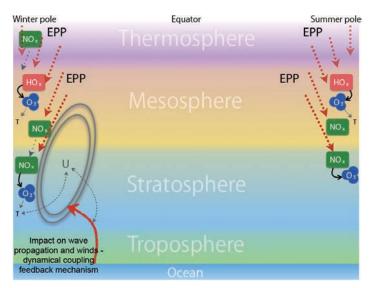
http://progearthplanetsci.org/index.html

Review

Space and planetary sciences

太陽が気候変動に与える影響は何だろうか? CAWSES-II 期間中の研究活動の概観

Seppälä A, Matthes K, Randall C E, Mironova I A


What is the solar influence on climate? Overview of activities during CAWSES-II

Seppälä A, Matthes K, Randall C E, Mironova I A

[Keywords] Climate, Atmosphere, Solar irradiance, Total solar irradiance, TSI, Solar spectral irradiance, SSI, Energetic particles, EPP, Cosmic rays

本論文では、SCOSTEPのCAWSES-II科学プログラムのタスクグループの一つ「太陽が気候変動に与える影響は何だろうか?」で同定された鍵となる研究課題に対する研究の主な進展状況を概観する。全太陽放射量(TSI)や太陽放射スペクトル(SSI)などを含めた太陽放射による気候影響、高エネルギー粒子降り込み(EPP)や宇宙線(CR)を含めた高エネルギー粒子による気候影響、のさまざまな側面について紹介する。本論文では、2009年から2013年における研究の進展状況を議論するだけでなく、上記で挙げたさまざまな太陽活動起源の要因が、地球の気候変動を引き起こすメカニズムを浮き彫りにする。鍵となる研究課題は以下のようになる:

太陽の気候影響において、太陽放射のスペクトル変動の重要性は何だろうか? 高エネルギー粒子が大気全体に与える影響は何で、それがさらに気候変動にどのように影響していくだろうか?

高エネルギー粒子降り込み(EPP)の大気への直接的・間接的な影響の模式図。EPP は極域に集中して大気のイオン化を引き起こし,HOx や NOx を生成させる。

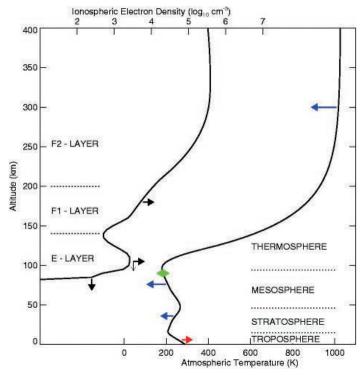
輸送の効果は灰色のドット線で示されており、大気の力学的な結合の効果は灰色の点線で示されている。直接的な化学反応は黒の矢印で示した。

モデルは、太陽放射や高エネルギー粒子の大気や気候への影響をどれだけ正確に予測できるだろうか?

日本語原稿執筆者:塩川 和夫(名古屋大学 太陽地球環境研究所)(敬称略)

Space and planetary sciences

気候変動に対する中間圏-熱圏-電離圏システムの応答と CAWSES-II の貢献


Laštovička J, Beig G, Marsh D R

Response of the mesosphere-thermosphere-ionosphere system to global change – CAWSES-II contribution

Laštovička J, Beig G, Marsh D R

[Keywords] Mesosphere, Thermosphere, Ionosphere, Long-term trends, Climatic change

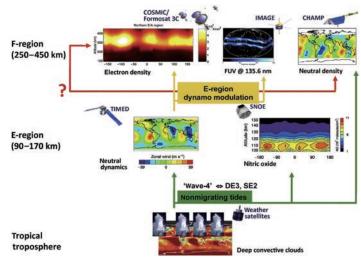
中間圏-熱圏-電離圏(本論文ではこの領域を ジオスペースと呼ぶ)における各種パラメータ (気温,風,電子密度等)の長期トレンドは,気 候変動に敏感な指標であると同時に, 現在の生 活においてますます重要になりつつある人工衛 星の技術にも影響を及ぼすため、重要性の増し ている研究領域である。また、同研究領域は CAWSES-II プロジェクトのタスクグループ2 (TG-2)「ジオスペースは気候変動にどのよう に応答するか」の重要な研究ターゲットでもあ る。TG-2では3つのプログラムを通じてジオス ペースにおける長期トレンドの研究が実施され、 多くの分野で大きな進展が見られた。 例えば, 成層圏オゾンの変動が上層大気の長期トレンド に与える影響の理解と定量化が進んだ他、中間 圏気温と極中間圏雲の長期トレンドのシミュ レーションは観測結果と良い一致を見せるよう になった。また、熱圏密度の長期トレンドが太 陽活動極小期になぜ大きいのかの理解も進んだ。 本論文では、TG-2におけるジオスペースの長 期トレンド研究の進展だけでなく、CAWSES-II の枠組みには含まれない長期トレンド研究の成 果も併せて紹介し、上層大気および電離圏にお ける長期トレンド研究の進展を概観する。

地球大気の気温(右実線と下目盛)と電子密度(左実線と上目盛)のトレンドの高度分布。矢印は変化の向きを表し、赤は温暖化、青は寒冷化、緑は気温変化無し、黒は電子密度の変化(水平矢印)と電離層高度の変化(鉛直矢印)。

日本語原稿執筆者:中村 卓司(国立極地研究所 宇宙圏研究グループ)(敬称略)

Space and planetary sciences

下層大気からの入力に対するジオスペースの応答: CAWSES-II タスクグループ4の成果


Oberheide J, 塩川 和夫, Gurubaran S, Ward W E, 藤原 均, Kosch M J, Makela J J, Takahashi H

The geospace response to variable inputs from the lower atmosphere: A review of the progress made by Task Group 4 of CAWSES-II

Oberheide J, Kazuo S, Gurubaran S, Ward W E, Fujiwara H, Kosch M J, Makela J J, Takahashi H

[Keywords] Geospace, Thermosphere, Ionosphere, Tides, Planetary waves, Gravity waves, Traveling ionospheric disturbances, Traveling atmospheric disturbances

大気圏ー電離圏ー磁気圏の結合が起こる成層 圏から数千km の高さにいたるジオスペースの 変動に関して、最近10年間の新しい人工衛星計 画や地上ネットワーク観測、大気全体を再現す るモデルにより、パラダイムシフトがなされて いる。すなわち、この領域の状態は、下層大気 の気象や気候と強く結びついていることが明ら かになった。これは、地球周辺の宇宙空間の変 動は、高緯度における磁気圏からのエネルギー 流入や太陽の極端紫外線の変動のみによって駆 動されているというこれまでの教科書的な概念 を覆すものである。下層大気からのエネルギー と運動量を輸送する主要なメカニズムは、さま ざまな空間・時間スケールの大気波動の生成・ 伝搬・消失過程や、電離圏ダイナモやプラズマ バブルの誘起に代表されるこの大気波動の電離 圏プラズマとの結合である。SCOSTEP の CAWSES-II プログラム (2009-2013) のタ スクグループ4の主要な課題は、気象現象に起

下層大気の気象変動が太陽非同期の大気潮汐を介して中間圏や熱圏・電離圏の大気・プラズマに与える影響を,いくつかの人工衛星の観測に基づいて示した模式図。

それぞれの図は, Lin et al. (2007), Immel et al. (2006), Oberheide et al. (2006), Oberheide and Forbes (2008) および Dr X. Zhang and Dr. S. L. Bruinsma より提供された。

因する大気波動に対して、そのジオスペースの応答や、その平均流との相互作用、電離圏への影響、そしてオーロラ過程など磁気圏からのエネルギー流入に起因する熱圏擾乱との関係を研究することであった。本論文では、CAWSES-II の期間になされた研究の進展について、特に大気重力波、惑星波、大気潮汐波とそれらの電離圏への影響をレビューする。タスクグループ4でなされた科学キャンペーンにもふれるとともに、今後の研究の方向性も議論する。

日本語原稿執筆者:塩川 和夫(名古屋大学 太陽地球環境研究所)(敬称略)

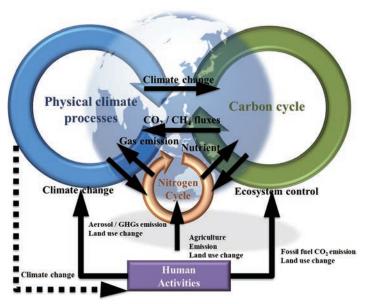
Atmospheric and hydrospheric sciences

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

気候学際研究モデル (MIROC) を中心とした地球システムモデリングの20年


河宮 未知生、羽島 知洋、立入 郁、渡辺 真吾、横畠 徳太

Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC)

Michio Kawamiya, Tomohiro Hajima, Kaoru Tachiiri, Shingo Watanabe, Tokuta Yokohata

[Keywords] Earth system model, Climate change, IPCC, Carbon cycle, Biogeochemistry, Interdisciplinary project, Remaining carbon budget, Socioeconomics, Nitrogen, Iron.

本論文では、日本で開発された MIROC (気 候学際研究モデル)に基づく地球システムモデ ル (ESM) の成果を中心に、過去20年間の ESM による研究を概観する。ESM とは、炭素 循環などの生物地球化学的プロセスを組み込ん だ気候モデルである。ESM の開発は、気候変動 と炭素循環のフィードバックの研究が契機と なっている。最新の ESM は、初期の ESM に比 べてはるかに現実的なものとなっており、大気 化学や窒素・鉄の循環、大気中のダストや河川 による栄養塩の輸送など、炭素以外の様々な生 物地球化学的プロセスが含まれるようになって いる。ESMは気候変動緩和目標に見合った二酸 化炭素排出量の評価など、多くの実用的な課題 に利用され, 気候変動緩和政策の立案には欠か せないツールといえる。また、社会経済と地球 システムの結合系の研究や、炭素循環の10年規 模予測など、ESM を利用した新たな野心的な取 り組みも進んでいる。ESM の改良のためには、

地球システムモデル (ESM) による地球変動予測の概念図:

人為的な温室効果ガスの排出や窒素固定が増加している。ESM を用いることで、気候変動と生物地球化学サイクルの相互作用をモデル化することが可能になった。

気候科学に関する様々な分野を統合する活動をさらに推し進める必要がある。ESM の新たな応用は有意義な洞察をもたらす可能性があり、気候科学以外の分野、例えば社会経済学分野との連携を拡大することを指向すべきである。

日本語原稿執筆者:河宮 未知生(海洋研究開発機構 環境変動予測研究センター)(敬称略)

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

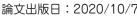
d4PDF:地球温暖化リスク評価のための大規模アンサンブル高解像度気候モデルシミュレーション

石井 正好, 森 信人

d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment

Masayoshi Ishii, Nobuhito Mori

[Keywords] Global warming, d4PDF, ensemble climate simulation, atmospheric model, dynamical downscaling, detection and attribution, impact assessment, climate change adaptation, natural hazard, storm surge


現在,「地球温暖化対策に資するアンサンブル 気候予測データベース (d4PDF)」として公開 している大規模気候シミュレーションデータ ベースは、気候変化に伴うリスク評価を行える ように作成されたものである。2015年時点で完 了した計算結果を公開して以後も, 本データ ベースは拡張を続けている。本データベースに は、高解像度全球および領域大気モデル(解像 度はそれぞれ 60kmと 20km) による, のべ数 千年のアンサンブル過去・将来気候シミュレー ション結果が含まれている。将来シミュレー ションは、産業革命以前から全球平均地表面気 温が 4K, 2K, そして 1.5K 上昇した気候状態 を設定して行われている。地球温暖化が生じて いない, つまり 20世紀初頭の気候状態が現在 まで継続していると想定した気候シミュレー ション実験出力も d4PDF には含まれている。 実験データの総量は約2ペタバイトである。使 用した大気モデルは、気候値や、自然変動、豪 雨や台風などの極端現象について、過去気候の 特徴を良く再現している。データ利用者は、 d4PDF の過去と将来シミュレーション出力か ら、気候の平均状態や豪雨や台風などの顕著現 象の特性についての統計的に有意な将来変化を,

過去(水色), 非温暖化過去(青), 1.5K(緑), 2K(橙), 4K(赤) 昇温 気候シミュレーションと6つの気候モデル平均のCMIP5歴史実験(黒) の全球平均地表面気温偏差の時系列。灰色で示したレンジは各実験アンサ ンブルの95%信頼区間を示す。気温偏差は、各シミュレーション実験の 1975年~2005年の平均からの差で定義した。

統計的仮定を導入することなく、簡単な算術計算により求めることができる。本データベースは、温暖化に起因する気候変化を調査する目的にも有用である。気候変化の影響評価研究では、自然災害、水文、都市計画、農業、健康、保険に係る様々な分野でのデータ利用が進められている。気候変動研究や気候変化リスク評価研究を進めたり、地球温暖化適応施策を検討したりする上で、本データベースはいまや不可欠なものとなっている。さらに、日本では、d4PDFの普及とともに、地球温暖化研究に係る学際的研究コミュニティが形成された。

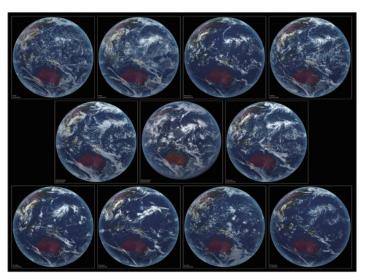
日本語原稿執筆者:石井 正好(気象研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

非静力学領域の大気大循環モデルの力学:全球非静力学大気モデル比較実験


Stevens B, 佐藤 正樹, Auger L, Biercamp J, Bretherton CS, Chen X, Duben P, Judt F, Khairoutdinov M, Klocke D, 小玉知央, Kornblueh L, Lin SJ, Neumann P, Putman WM, Rober N, 澁谷亮輔, Vanniere B, Vidale PL, Wedi N, Zhou L

DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains

Stevens B, Satoh M, Auger L, Biercamp J, Bretherton CS, Chen X, Duben P, Judt F, Khairoutdinov M, Klocke D, Kodama C, Kornblueh L, Lin SJ, Neumann P, Putman WM, Rober N, Shibuya R, Vanniere B, Vidale PL, Wedi N, Zhou L

[Keywords] Climate modelling, Model intercomparison project, Tropical Convection

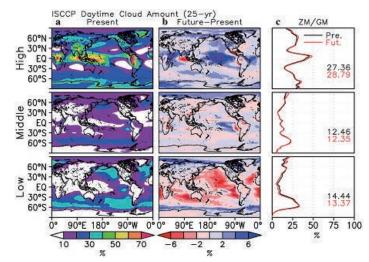
全球ストーム解像モデル(全球非静力学モデ ル) の最初の相互比較プロジェクトである DYAMOND の実験プロトコルと研究目的に関 するレビューを提示する。 9つのモデルが40日 間(2016年8月1日-9月10日)の相互比較期間 のシミュレーション結果を提出した。これらの うち8つのモデルは、5km 未満のメッシュ間隔 で球面を覆う格子系を採用している。全球ス トーム解像モデルでは熱帯の深い対流パラメリ ゼーションを用いずに、熱帯の積雲対流に伴う メソ循環の力学的な時間変化を計算することに より、気候システムのより自然に即した表現が 可能である。また、人工衛星搭載センサーによ る同程度の高解像度のデータと, より親和性の ある比較が可能になる。各モデルと計算結果の 基本的な特性をより詳細に説明するとともに、 今後の研究のために、この計算結果の利用可能 性の計画を示す。モデルアンサンブルの全球お よび東西平均したエネルギー収支、可降水量の 分布. 降水量を示し. 熱帯低気圧の再現性と熱 帯気象において重要な可降水量の予測可能性を 評価する。

DYAMOND 参加モデルの雲画像のスナップショット。静止気象衛星ひまわり8号の視点から作成したモデル計算結果における2016年8月4日の雲分布を示す。画像は、各モデルの水物質の分布に基づいて色付けしたものである、モデルによって解像される対流構造と、実際の観測とを区別するのが難しいことを示す。画像は左から順に、上段:IFS-4km、IFS-9km、NICAM、SAM、中段:Arpege、ひまわり8号、ICON;下段:FV3、GEOS5、UKMO、MPAS。

日本語原稿執筆者: 佐藤 正樹 (東京大学 大気海洋研究所) (敬称略)

Atmospheric and hydrospheric sciences

全球非静力学大気モデルによる雲プロセスに関する気候感度の不確実性の低減


佐藤 正樹, 野田 暁, 清木 達也, Chen Ying-Wen, 小玉 知央, 山田 洋平, 久芳 奈遠美, 佐藤 陽祐

Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model

Satoh M, Noda AT, Seiki T, Chen Y, Kodama C, Yamada Y, Kuba N, Sato Y

[Keywords] NICAM, cloud microphysics scheme, cloud changes, cloud feedback, global non-hydrostatic model, global warming

従来の気候モデルでは, 雲の表現の不確定性 により、気候感度の推定に大きな不確実性があ る。 気候感度の不確実性の低減のために, 高解 像度の全球非静力学モデルを利用するアプロー チが有望である。 このようなモデルはメソス ケールの対流システムを直接シミュレートする ことによって雲の構造を再現することが可能で, その結果を人工衛星観測とよく対比できる。 本 論文では、全球非静力学モデルを用いた雲プロ セスに関する気候感度の不確実性を低減するこ とを目的とした5年間の研究プロジェクトの成 果をレビューする。 このプロジェクトは, 気候 変動リスク情報創生プログラム(SOUSEI)の サブグループとして実施されたもので、気候変 化に関連する雲プロセスを研究するために非静 力学正二十面体格子大気モデル(NICAM)を利 用した。 NICAM は、従来の全球気候モデル (GCM) よりもはるかに高い分解能(約7kmま たは14km メッシュ) で数値シミュレーション を実行し, 気候予測の不確実性の要因である対

NICAM でシミュレートされた年間平均した雲量の全球分布と温暖化による変化。 雲量は、国際衛星雲気候計画(ISCCP)シミュレータによって計算された昼間の雲量[%]であり、上図から高、中、低層の雲量を表す。 左列 (a) 現在気候シミュレーション(1979-2003)の結果、中列 (b) 将来気候(2075-2099)と現在気候シミュレーションの差、右列 (c) 現在気候(黒)および将来気候(赤)シミュレーションの東西平均(ZM)および全球平均値(GM)。

流パラメタリゼーションを用いず、雲微物理スキームにより雲を精緻に表現することができる。

本研究プロジェクトには、以下の3つの研究目標が設定された:1)タイムスライスの手法によって得られたNICAMによる地球温暖化シミュレーションにおける雲の変化の解析、2)雲微物理スキームの改良・開発とそれに対する結果の感度の解析、3)地球温暖化による台風等の大気擾乱に伴う循環の変化の解析。この研究プロジェクトではまた、ダブルモーメントバルク法の雲微物理スキームをNICAMに実装し、人工衛星観測を用いてそれによるシミュレーション結果を評価するとともに、本スキームの特性をビン型雲微物理スキームと比較した。NICAMによる将来予測シミュレーションでは、他のGCMの結果とは異なり、一般に高い雲の雲量が増加することが示された。また、NICAMによる高解像度シミュレーションにより、雲の水平サイズ分布の変化や熱帯低気圧・温帯低気圧の構造の変化について議論することが可能になった。本レビューの最後には、TOUGOUと呼ばれるSOUSEI後継プログラムにおけるNICAMを用いた地球温暖化研究の将来の展望についても解説する。

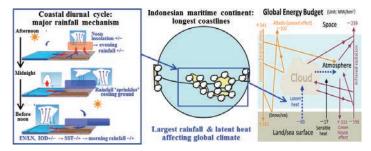
日本語原稿執筆者:佐藤 正樹(東京大学 大気海洋研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

地球の気候を支配する海大陸の海岸線


山中 大学, 荻野 慎也, 伍 培明, 濱田 純一, 森 修一, 松本 淳, Syamsudin F

Maritime continent coastlines controlling Earth's climate

Yamanaka MD, Ogino SY, Wu PM, Hamada JI, Mori S, Matsumoto J, Syamsudin F

[Keywords] Indonesian maritime continent, Atmosphere—ocean—land interaction, Convective clouds, Multiple scales, Diurnal cycle, Sea-land breeze circulation

モンスーンアジア水文気候研究計画 (MAHASRI; 2006-16) 期間に、インドネシア「海大陸」を対象としてレーダー網 (HARI-MAU; 2005-10) および気候研究機関の雛形 (MCCOE; 2009-14) を構築する2つのプロジェクトを実施した。本稿では、これらのプロジェクトで得られた、世界最多雨域の「海大陸」に関する気候学的研究成果を総括する。「海大陸」の大気変動で基本となるものは、海陸間温

「海大陸」海岸線周辺の日周期降雨・潜熱解放による全地球的気候支配

度差を原因として海岸線に沿って生じる日周期変動である。すなわち昼頃までの晴天時に入射した太陽放射により午後に陸上が海上より高温となり、その結果(中緯度の晴天夜間赤外放射とは異なり)、対流雲から降る夕立の '打ち水' 効果により陸が冷やされ、そのため日出前に相対的に高温となった海上で対流雲と朝雨が生じる。従って、中緯度とは異なり、「海大陸」の日周期変動は雨季の悪天日において、より顕著である。1日より長い周期、すなわち季節内、半年、1年あるいはそれ以上の周期の変動は、日周期変動の振幅の増減として現れる。例えば、ジャワやバリで低緯度にも拘らず南半球夏季に顕著な雨季があるのは、太陽高度が最高となる季節に、午前の晴れ間の日射加熱とそれが生む午後の海風水蒸気輸送が最も強くなるからである。またエルニーニョ期の「海大陸」では、平年に比べて海水温が低く、海上の対流雲と朝雨が普段より弱いことが効いて、少雨傾向となる。低気圧が殆ど生じない赤道周辺においては、日周期変動が殆ど唯一の組織的に雨を降らせるメカニズムであるため、年雨量は海岸線から離れると急激(100~300kmで1/3程度)に減少し、領域全体では海岸線密度(水平分解能100kmで測った海岸線の長さを陸地面積で割ったもの)が大きいほど多雨となる傾向をもつ。このため「海大陸」は、面積は地球全体の4%ほどに過ぎないが、雨量や潜熱加熱は全球平均の2倍ほどにも及ぶ。本来局地的な日周期変動は「海大陸」全域にわたり海陸間でほとんど同期して現れ、そのようにして一体化した「海大陸」の対流が、全地球的な気候に影響を与える。従って、「海大陸」域内の局地的対流活動を識別できる高分解能(<<100km; <<1日)な観測とモデルが、域内の防災のみならず、全地球的な気候予測の改善にも必須なのである。

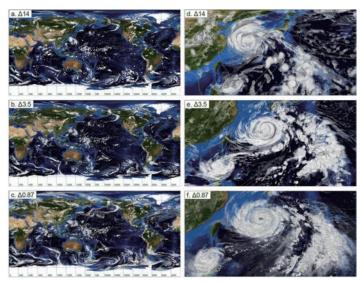
日本語原稿執筆者:山中 大学(海洋研究開発機構 大気海洋相互作用研究分野)(敬称略)

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

スーパーコンピュータ「京」を用いた高解像度全球非静力学大気シミュレーションの成果と挑戦


佐藤 正樹, 富田 浩文, 八代 尚, 梶川 義幸, 宮本 佳明, 山浦 剛, 宮川 知己, 中野 満寿男, 小玉 知央, 野田 暁, 那須野 智江, 山田 洋平, 福富 慶樹

Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer

Satoh M, Tomita H, Yashiro H, Kajikawa Y, Miyamoto Y, Yamaura T, Miyakawa T, Nakano M, Kodama C, Noda A T, Nasuno T, Yamada Y, Fukutomi Y

[Keywords] K computer, NICAM, intra-seasonal oscillations, Madden-Julian oscillation, tropical cyclone, global non-hydrostatic model

本稿では、2011-2016年に実施された文部 科学省 HPCI 戦略プログラムにおけるスーパー コンピュータ「京」を用いた非静力学正二十面 体格子大気モデル(NICAM)による全球数値大 気実験の主たる成果をレビューする。「京」は 2012年9月から共用が開始され、HPCI 戦略プ ログラムの5分野の研究の主たる計算機として 利用された。HPCI戦略プログラム分野3「防 災・減災に資する地球変動予測」のもとで, NICAM を用いた気候・気象シミュレーション 研究を実施した。NICAM と「京」との連携研 究により、次の3つの方向性の研究が推進され た:1) 対流システムをより現実的に表現する ことが可能な、さらなる高解像度の全球シミュ レーション; 2) 10-30日の延長予報を可能とす る多メンバーによるアンサンブルシミュレー

シミュレートされた雲の解像度依存性:水平格子間隔14km, 3.5km, 870m。

ション; 3) 気候状態およびその変動を含む数十年積分。「京」が登場するまでは、NICAM によるマッデン・ジュリアン振動 (MJO) 等の季節内振動の研究は、個々の事例を現実的に再現する等の事例研究に留まっていたが、「京」による計算性能の飛躍的向上により、積分時間や水平解像度の向上に加えて、MJO の多数の事例を扱うことが可能となった。本研究プロジェクトにより、高解像度全球非静力学モデルによって季節内振動やそれに伴う熱帯低気圧の発生についての予測可能性が向上することが示された。km 以下のメッシュの全球シミュレーション、数十年積分のシミュレーションの結果についてレビューするとともに、今後のポスト「京」コンピュータでの課題・展望についても述べる。

日本語原稿執筆者: 佐藤 正樹 (東京大学 大気海洋研究所) (敬称略)

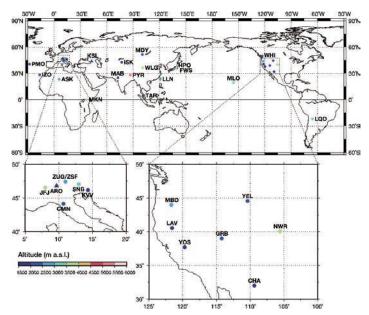
http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

山岳域における大気化学観測に関する総説

岡本 祥子, 谷本 浩志


A review of atmospheric chemistry observation at mountain sites

Okamoto S, Tanimoto H

[Keywords] Atmospheric observation, High-altitude station, Long-range transport, Seasonal cycle, Long-term trend, Biomass burning, Anthropogenic pollution

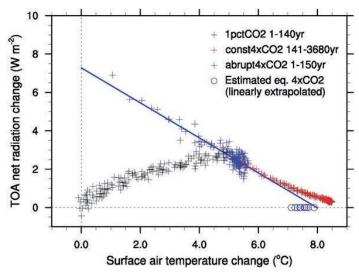
地球の気候や環境にとって重要な役割を果た す微量ガス成分やエアロゾル成分の自由対流圏 中における変化および変動を把握し、その要因 を理解することは, 現在の大気化学研究におけ る重要な課題である。山岳域の大気観測所は人 為的な排出源から遠く離れているため, こうし た地球規模のベースライン的変動を観測するの に適した場所である。それゆえ、山岳域におけ る大気化学観測は、人間活動から排出された大 気汚染物質や森林火災、砂漠から放出されたガ ス・エアロゾルの長距離輸送に関する研究や, 全球および領域化学輸送モデルの評価にも用い られている。本論文では, 反応性微量成分(例 えば、対流圏オゾンやその前駆体である一酸化 炭素、窒素酸化物、非メタン炭化水素)に着目 し、過去および現在において、世界中で行われ ている山岳域での大気化学観測についてまとめ た。観測手法やモデリングの発展により、ベー スライン的変動や長距離輸送の気象学的メカニ ズムが徐々に明らかになりつつある。最後に、 山岳域での大気化学観測の今後の方向性につい ても述べる。

> 日本語原稿執筆者: 岡本 祥子, 谷本 浩志 (国立環境研究所 地球環境研究センター) (敬称略)

本論文で議論した山岳域大気観測所の分布。丸印の観測所は本論文でデータを示した観測所を表す。ASK Assekrem, CHA Chiricahua NM, CMN Monte Cimone, GRB Great Basin NP, HPO Mt. Happo, ISK Issyk-Kul, IZO Izāna, JFJ Jungfraujoch, KVV Krvavec, LAV Lassen Volcanic NP, LLN Lulin, LQO La Quiaca Observatorio, MBO Mt. Bachelor Observatory, MKN Mt. Kenya, MDY Mondy, MLO Mauna Loa, NWR Niwot Ridge, PMO Pico Mountain Observatory, PYR Nepal Climate Observatory-Pyramid, SNB Sonnblick, TAR Tanah Rata, WHI Whistler Mountain, WLG Mt. Waliguan, YEL Yellowstone NP, YOS Yosemite NP, ZSF Zugspitze-Schneefernerhaus, ZUG Zugspitze-Gipfel. 三角印の観測所は本論文でデータを示さず議論のみおこなった観測所を表す。ARO Arosa, FWS Mt. Fuji, KSL Kislovodsk.

Atmospheric and hydrospheric sciences

放射強制力に対する地球平均地上気温の過渡的応答に関する理解の現状


吉森 正和, 渡部 雅浩, 塩竈 秀夫, 岡 顕, 阿部 彩子, 大垣内 るみ, 釜江 陽一

A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation

Yoshimori M, Watanabe M, Shiogama H, Oka A, Abe-Ouchi A, Ohgaito R, Kamae Y

[Keywords] Transient climate response, Equilibrium climate sensitivity, Climate feedback, Ocean heat uptake efficacy, Efficacy of forcing

観測された気温変動がどのような原因で起き たのか、将来どのくらいのスピードで地球が温 暖化するのか、二酸化炭素の排出を削減してそ の濃度を安定化させた場合、その後まだどのく らい温暖化するのか、などの実用的な疑問に答 えるためには、放射強制力に対する長い時間が 経過した後の平衡応答を理解するだけでは不十 分であり、時間変化する過渡応答を理解する必 要がある。これまでの研究では、放射強制力が 与えられたときに温暖化の程度を決める気候 フィードバックパラメータは気候システムに固 有なものであり、一定であると仮定されて議論 が進められることが多かった。しかし、最近の 研究では、この仮定によって将来の気候予測に 影響の無視できない誤差が生じることが明らか になってきた。本総説では、まず気候フィード バックパラメータが一定のときに、気温上昇率 を決める要因についてレビューする。次に、気 候フィードバックパラメータが変化する要因を

 CO_2 増加時の地球平均地上気温の変化と地球のエネルギー収支の関係。黒十字:年1%の CO_2 漸増実験(1~140年間の毎年),青十字: CO_2 を突然4倍にした実験(abrupt4 xCO_2 ,1~150年間の毎年),赤十字: CO_2 を4倍で一定にした実験(141~3680年間の各20年平均),青線:青十字の回帰直線,青丸:10の異なる初期値から始めた abrupt4 xCO_2 のアンサンブル実験の最初の20年間から外挿された平衡時の気温応答。

説明するために導入された「海洋熱吸収のエフィカシー」と「放射強制因子のエフィカシー」という比較的新しい2つの概念を紹介する。海洋熱吸収のエフィカシーは、海洋熱吸収によってもたらされる過渡的温暖化応答を平衡応答と関連付けるための概念であり、放射強制因子のエフィカシーは、 CO_2 以外の放射強制因子による気温上昇を CO_2 による気温上昇と関連づけるための概念である。これらの概念は、放射強制力の定義や計算にも深く関係する一方、「海洋熱吸収のエフィシェンシー」など類似の専門用語もあり、必ずしも広く理解されていない。本総説では、日本の数値気候モデル MIROC を用いて数千年積分を行った実験データを例に挙げながら解説を補足する。最後に、最新のIPCC レポートにも関係する CO_2 倍増時の気温上昇幅を示す平衡気候感度の推定の問題に触れ、今後の課題や推奨される方向性について言及する。

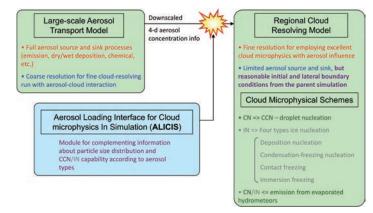
日本語原稿執筆者:吉森 正和(北海道大学 大学院地球環境科学研究院・北極域研究センター)(敬称略)

http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

雲解像モデルへのダウンスケーリング型エアロゾル導入システム(ALICIS)開発レビュー


井口 享道, Choi I-J, 佐藤 陽祐, 鈴木 健太郎, 中島 映至

Overview of the development of the Aerosol Loading Interface for Cloud microphysics In Simulation (ALICIS)

Iguchi T, Choi I-J, Sato Y, Suzuki K, Nakajima T

[Keywords] Cloud microphysics, Cloud and aerosol, Regional modeling, Dynamical downscaling

PM2.5 (大きさが2.5 μm 以下の微粒子) といった用語に代表される,大気中微粒子が拡散集合したものはエアロゾルと総称される。高濃度のエアロゾルは視界不良や人体への健康影響を引き起こす。とりわけ中国における大気汚染は近年のニュースを騒がせている。一方で,エアロゾル粒子は大気中の雲粒子の生成に重要な役割を果たしている。これは,大気中の水蒸気が凝集して水や氷の粒子を形成する際に,エアロゾル粒子が核として作用するためである。この効果を通じて,エアロゾルの濃度,組成は雲や降水の性質に密接な関係がある。

ALICIS システム模式図

エアロゾルが雲に及ぼす影響について、これまで観測とモデルシミュレーションの両面から様々な研究が行われてきた。そのモデルシミュレーションにおける問題点の一つとして、エアロゾルと雲の空間スケールにおけるギャップをどう埋めるかという課題がある。エアロゾルの発生源からの輸送を予報するためにモデル計算領域を広くしたい一方で、雲の発達過程を精度良く表現するためには解像度を細かく設定しなければならない。この空間スケールギャップを克服するための手段の一つとして、広域低解像度モデルから狭域高解像度モデルへのダウンスケーリングが用いられている。

本論文は、雲解像モデルシミュレーションへのダウンスケーリング型エアロゾル導入システム(ALICIS)について、その研究背景と開発履歴、計画をレビューしたものである。ALICIS の導入により、現実的なエアロゾル濃度の時空間分布と、雲粒子形成に重要なエアロゾル粒子サイズ分布の情報が、雲解像シミュレーションに補完される。これらの情報の補完は、モデルシミュレーションにおける雲の微物理特性の再現性を大幅に向上させることがこれまでの研究の中で実証されている。

日本語原稿執筆者:井口 享道 (メリーランド大学 ESSIC) (敬称略)

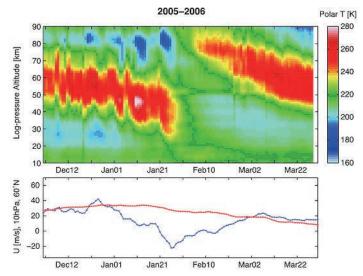
http://progearthplanetsci.org/index.html

Review

Atmospheric and hydrospheric sciences

中間圏および下部熱圏の力学:レビュー

Vincent R A


The dynamics of the mesosphere and lower thermosphere: a brief review

Vincent R A

[Keywords] Atmospheric tides, Gravity waves, Planetary waves, Middle atmosphere, Mesosphere, Lower thermosphere, Wave coupling

中間圏-下部熱圏 (MLT) (高度60-110 km)の力学は波とその効果によって支配されて いる。MLTの基本的な構造は小規模重力波によ る運動量の蓄積によって支配されており、これ によって中間圏界面における夏極から冬極への 循環が駆動されている。大気潮汐もまた MLT の力学に重要な要素である。広範囲に展開した 地点観測網,人工衛星,数値モデリングはいず れも、MLT内の太陽非同期の潮汐モードは、熱 圏・電離圏との直接的な結合を引き起こし、以 前にも増して重要であることを指摘している。 冬期の突然昇温等のより下層の大気中の主要な 擾乱は、MLT の循環パターンや熱的構造に急激 な変化をもたらす。赤道中間圏においては、準 2年の時間スケールの変動もみられるが、主に 重力波収束によって駆動される半年スケールの 東西風の振動が卓越している。準2日波のよう な惑星規模の波動は、特に南半球において夏季 MLT の力学の一時的な支配要因となり、高緯度 MLTの熱的構造と物理特性の急激な変化をもた らす効果があるだろう。本論文では、MLTの力 学に関して、特に過去10年間の研究の進展に着 目した簡単なレビューを行う。

日本語原稿執筆者:河谷 芳雄(海洋研究開発機構) 佐藤 正樹(東京大学 大気海洋研究所/ PEPS 編集委員会 セクション編集長) (敬称略)

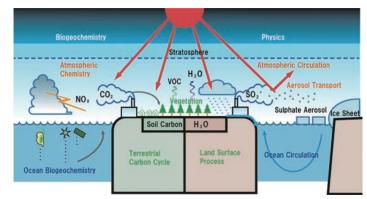
2006年の突然昇温。上図:2006年1月下旬の成層圏突然昇温期間中の温度の時間高度断面。成層圏界面が時間とともに下降し、昇温のピーク時に消滅、それに引き続いて中間圏に圏界面が再出現し、下降していくことに注目。下図:北緯60度、10hPa における東西平均東西風の時間変動。青線は突然昇温期間中の風速、赤線は気候学的な季節変化。Yamazaki et al. (2012) の図1に基づく。

成層圏の昇温は大規模な惑星波が冬季の中層大気(高度10-100km)で砕波することで生じる。この図は中層大気全体が影響を受けていることを示しており、東西風と温度の構造が一時的に夏季条件のように逆転する。成層圏の東西風は短時間で西向き(負値)に変わり(下図の青線)、高度70km以上の中間圏では東向きに変わる。卓越風のこのような変化は、続いて重力波の鉛直伝播に影響を与え、重力波が中層大気に及ぼす効果を変える。成層圏の昇温の効果は電離圏でも観測されており、電波の伝播に影響を及ぼしている。

なお、論文中の Figure 1. のキャプション中の Hagan et al. ([1999]) は Hagan et al. ([2009]) の誤りである。

Atmospheric and hydrospheric sciences

IPCC AR5における地球システムモデリングとこれから


羽島 知洋, 河宮 未知生, 渡辺 路生, 加藤 悦史, 立入 郁, 杉山 昌弘, 渡辺 真吾, 岡島 秀樹, 伊藤 彰記

Modeling in Earth system science up to and beyond IPCC AR5

Hajima T, Kawamiya M, Watanabe M, Kato E, Tachiiri K, Sugiyama M, Watanabe S, Okajima H, Ito A

[Keywords] Earth system science, Earth system model, Carbon and nitrogen cycle, Land and ocean CO2 uptake, Ocean acidification, Land-use and land-cover change, EMICs, Geoengineering, Iron deposition

人為 CO₂排出に代表される人間活動は地球環境を変化させてきており、現在は、その変化がより顕在化しつつある状況にある。地球環境を構成する多くの要素は相互に作用しており、個別要素に切り離して議論するだけでは不十分であるため、この問題を解決するためには研究分野間の垣根を越えた科学的協力が欠かせない。地球システムに対する理解を深化させ、現在進行中の地球環境問題を解決するためには、このような認識を持って取り組む必要がある。これらの一部は、地球システムモデルという数値計

地球システムモデルの概念図

算モデルとして既に具現化されており、実際に地球環境変動予測に用いられている。本論文ではまず、地球システム科学におけるモデリングの発展について延べる。次に、気候変動に関する政府間パネルの最新報告書の中から、特にこれら数値計算モデルによって得られた知見に焦点を当てて紹介するとともに、次期報告書に向けて議論が進められている以下の7つの研究課題:1) 炭素循環や温室効果ガスと関連する「全球窒素循環」、2) CO2吸収に伴って生じる「海洋酸性化」、3) 主要な人為 CO2排出源の一つである「土地利用変化」、4) より長期/多数のアンサンブル数値実験を行う上で欠かすことの出来ない「簡略化された地球システムモデル」、5) 気候緩和の手段として期待される「気候工学」、6) 長期地球環境予測において重要な「海洋による CO2吸収」、7) 海洋 CO2吸収速度に影響を与える「海洋生態系への鉄供給」に関するレビューを行う。地球環境変化に関する科学的知見の集積と具体的対応は、地球科学において喫緊の課題である。モデリングという手法は、地球システムを構成する要素間の相互作用を明示的に取り扱うことが可能であり、多様化する研究分野の橋渡しをすることにより、今後の地球システム科学の発展に強く貢献する。

日本語原稿執筆者:河宮 未知生(海洋研究開発機構)(敬称略)

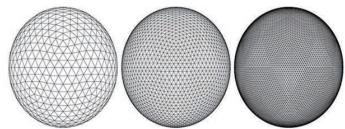
http://progearthplanetsci.org/index.html

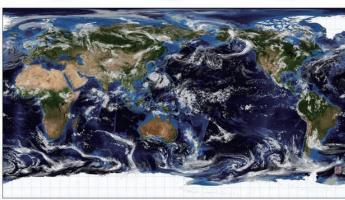
Review

Atmospheric and hydrospheric sciences

非静力学正20面体格子大気モデル NICAM: 概要および開発

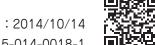
佐藤 正樹, 富田 浩文, 八代 尚, 三浦 裕亮, 小玉 知央, 清木 達也, 野田 暁, 山田 洋平, 五藤 大輔, 沢田 雅洋, 三好 建正, 丹羽 洋介, 原 政之, 大野 知紀, 伊賀 晋一, 荒川 隆, 井上 孝洋, 久保川 陽呂鎮


The Non-hydrostatic Icosahedral Atmospheric Model: Description and Development.


Satoh M, Tomita H, Yashiro H, Miura H, Kodama C, Seiki T, Noda A, Yamada Y, Goto D, Sawada M, Miyoshi T, Niwa Y, Hara M, Ohno Y, Iga S, Arakawa T, Inoue T, Kubokawa H.

[Keywords] Global non, hydrostatic model, Icosahedral grid, Global cloud-resolving simulations

本論文では、非静力学正20面体格子大気モデ ル NICAM に焦点を当てて、全球非静力学モデ ルの開発に関してレビューする。最近開発され たスーパコンピュータを用いて水平格子間隔約 1km の超高解像度全球大気循環のシミュレー ションを実行した。このような超高解像度のシ ミュレーションは、この目的のために開発され た準一様格子構造をもつ非静力学方程式系の全 球大気モデルによって実行される。本レビュー では NICAM の力学・物理コンポーネントそれ ぞれの開発について記述し、データ同化の手法、 NICAM に関連した数値モデル、および現在ま での NICAM に関係する研究の科学的概要につ いてまとめる。


> 日本語原稿執筆者:佐藤 正樹 (東京大学 大気海洋研究所)(敬称略)

上段:正20面体格子の例。左から格子分割レベル 3, 4,5(水平格子間隔 約 893, 446, 223km)。

下段: NICAM 870m メッシュ (格子分割レベル 13) 計算による雲分布 (Miyamoto et al. 2013 による)。

Human geosciences

Biogeosciences

http://progearthplanetsci.org/index.html

Review

Human geosciences

石造文化財等における塩類風化に関する理論的研究のレビュー

小口 千明, Swe Yu

A Review of Theoretical Salt Weathering Studies for Stone Heritage

Oguchi, C. T., Swe Yu

[Keywords] Salt weathering theories, Crystal growth pressure, Hydration, Thermal expansion of salt

塩類風化は、風化、侵食、運搬、堆積という地形変化プロセスの第1段階である風化の種類を表す地形学の専門用語である。塩類風化は、物理的風化メカニズムの1つに分類され、岩石内部に存在する水に溶けている塩類(酸・塩基成分に由来するイオン性化合物)が、乾燥により固体状の結晶として現れる際に生じる力により、岩石そのものを壊す現象である。

一般的用語としては「塩害」であり、建築用石材、モルタルやコンクリートなどの人工の建築材料、天然の岩石など材質を問わず、貴重な文化財・大型建造物や自然界に露出する岩壁などに対して、時に甚大な劣化を引き起こすこともある。このような問題に対処するために、ほぼ2世紀にわたり、各種塩類の結晶化や水和、熱膨張など、鉱物学や岩石学、地形学などいわゆる地球科学の域を越え、多様な学問分野で研究されてきた。

塩類風化現象においては、各種塩類の物理化学特性がきわめて 多様で反応段階も複雑であることから、この現象を定量的に示す 普遍的な理論は1つに定まっていない。本稿では、結晶成長理論 を中心に、先行研究で提唱されているいくつかの理論やそれらに 関係する実験的研究も含め、塩類風化の研究史と最近の動向についてレビューした。

塩類風化の重要なメカニズムとしての結晶化の概念は20世紀 初頭には提案され、多くの理論の提案も続いたが、それらを正し く適用するには、風化環境ならびに塩や岩石の種類の違いによる

エジプト, ギーザのピラミッド周辺の石灰岩岩盤でみられる蜂の巣状構造。塩類風化による岩盤表面の剥離パターンの1つ。

化学的特性・物性の違いを考慮し、状況に応じて提案されたモデルを選択して適用することが肝要である。このため、 学際的な視点から情報を収集し協力することが、劣化に瀕した石造文化財等への有意義な保全と問題への対応策につな がると考える。

日本語原稿執筆者:小口 千明(埼玉大学 大学院理工学研究科)(敬称略)

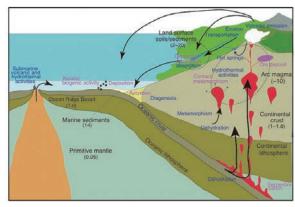
http://progearthplanetsci.org/index.html

Review

Human geosciences

ヒ素の循環と汚染

益田 晴恵


Arsenic cycling in the Earth's crust and hydrosphere: interaction between naturally occurring arsenic and human activities

Masuda H

[Keywords] Arsenic contamination, geologic cycle, plate tectonics, reduction, oxidation

1970年代末に地下水中ヒ素による慢性中毒の 以降ヒ素含有地下水の摂取による健康被害がインド・西ベンガル州で最初に報告された後,汚 染地域と被害者は世界的に増大し続けている。 ヒ素汚染地下水の原因は多くの場合自然由来で あるが,人間の社会活動が汚染の拡大に関わっていると考えられる。本報告では,世界各地の ヒ素汚染地域のケーススタディを整理し,地圏 と水圏でのヒ素の挙動と汚染が発生するメカニ ズムについて概説した。

ヒ素は微量(~ ppm 程度)ではあるが地圏に広く分布する元素である。一方、ヒ素汚染は弧状火山帯、激しい隆起・浸食・堆積作用が起こる造山帯とそれらの周辺地域に集中する傾向がある。このことは、ヒ素がプレートテクトニクスと深く関連して移動すること、また、活動

ヒ素の地球化学的循環過程

カッコ内の数値はそれぞれの地質体中のヒ素濃度。青字と紫字はヒ素の流出過程と固定過程となる地質現象を示す。

的なテクトニクス場でヒ素が水圏へ移動しやすい環境となることを示唆している(図)。ヒ素は親銅元素であるが、地圏では流体とともに移動しやすい。したがって、火成活動に伴うマグマ性流体や熱水、それらに起源を持つ硫化物鉱化体が一次的なヒ素原因物質となる。また、地下水ヒ素汚染は、低濃度であっても、水と反応しやすい状態でヒ素が分布することで発生する。細粒のヒ素含有鉱物を含む砕屑物や風成塵(特に火山灰)などが散在する新生代堆積物中に発達する地下水帯水層ではヒ素汚染地下水が広範囲に出現する。このような新生代堆積物層は、ヒマラヤ・チベットの周辺地域や風成層が発達する乾燥ー半乾燥地域の平野部で特徴的に見られる。これらのヒ素汚染地下水の形成には、表層水の流路や地下水帯水層中で起こる化学的風化作用や生物化学的作用が深く関与している。

日本語原稿執筆者:益田 晴恵(大阪市立大学大学院理学研究科)(敬称略)

Masuda, Figure 4

http://progearthplanetsci.org/index.html

Review

Biogeosciences

地球温暖化と海洋酸性化への海洋の石灰化生物の応答に関する展望 一高二酸化炭素濃度下での「温暖地球」におけるサンゴと有孔虫の挙動—

川幡 穂高, 藤田 和彦, 井口 亮, 井上 麻夕里, 岩崎 晋弥, 黒柳 あずみ, 前田 歩, 守屋 和佳, 真中 卓也, 高木 悠花, 豊福 高志, 吉村 寿紘, 鈴木 淳

Perspective on the response of marine calcifiers to global warming and ocean acidification – Behavior of corals and foraminifera in a high CO₂ world "hot house"

Kawahata H, Fujita K, Iguchi A, Inoue M, Iwasaki S, Kuroyamagi A, Maeda A, Manaka T, Moriya K, Takagi H, Toyofuku T, Yoshimura T, Suzuki A

[Keywords] Partial pressure of CO2, Global warming, Ocean acidification, Coral, Foraminifera, Bleaching, Calcite, Aragonite, Saturation state, Organic matter, Alkalinity, Carbon cycle

大気中の二酸化炭素(CO2)濃度は現在400ppmを超え、 IPCC のシナリオ RCP 6.0 (中程度) によると今世紀末に は720-1000ppm まで上昇し、「双子の悪魔」と呼ばれる 「地球温暖化」(気温は約2.6℃上昇)と「海洋酸性化」(pH も約0.3下降)が進行し、石灰化生物に大きな脅威となる と予想されている。低緯度に生息する造礁サンゴや有孔虫 は光合成共生をしているものが多く、これは温暖で貧栄養 の海洋を生きぬく生態系に適したものと考えられる。造礁 サンゴを中心とした共生藻を有する石灰化生物では、高温 と高光量の条件下での「白化」が世界的規模で重大問題と なっている。CO2が海水に溶存すると、海水中のCO2の分 圧(pCO2)と溶存無機炭素は増加し、pHと炭酸塩鉱物の 飽和度は減少するが、全アルカリ度は変化しない。海洋生 物の石灰化速度は酸性化した海水では概して減少する。し かしながら, Calcarina gaudichaudii というサンゴ礁に 生息する大型底生有孔虫では、通常と反対に高 pCO2条件 下で石灰化速度が増大した。このように、環境、種、生活 史のステージにより異なった応答が観察されることがある。 近年、カルシウムや酸素・炭素などの同位体比や生物体内 の pH の可視化などの研究を通じて石灰化機構の解明が進 んでいる。大気中 CO2濃度は>1,000ppm だった白亜紀で も大量の炭酸塩が沈積した。これは、陸域の風化により、 全アルカリ度が増加し、炭酸塩の保存が改善されためであ

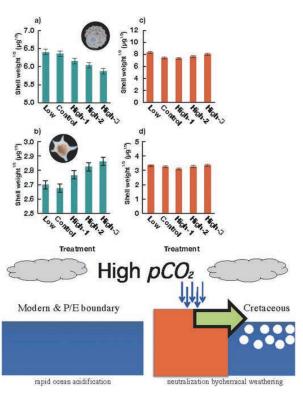


Fig. 1. 海洋酸性化への呼応を調べるための底棲有孔虫を用い た精密飼育実験。

Fig. 2. 地球表層システムにおける海洋酸性化と中和機能の模式図。

る。但し、この中和反応のスピードは大変遅い。一方、暁新世・始新世境界(5500万年前)では、メタンハイドレートの崩壊、メタンの酸化による CO2の供給により、現代のような深刻な海洋酸性化がもたらされ、底生有孔虫の半分が絶滅した。 CO2は極域や高緯度域の冷たい海水では溶解しやすく、深海では圧力効果により炭酸塩はより溶けやすい。このため、海洋酸性化は深層においても深刻な影響が懸念される。将来の研究課題として、炭酸塩の安定性について過去の全アルカリ度の定量的な復元に関する研究や、地球温暖化や海洋酸性化への生物の応答に関し、分子生物学的な分野からのアプローチなどなどが挙げられる。

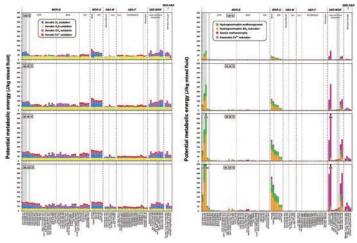
日本語原稿執筆者:川幡 穂高(東京大学 大気海洋研究所 海洋底科学部門)(敬称略)

http://progearthplanetsci.org/index.html

Review

Biogeosciences

海底熱水の物理・化学的多様性が熱水生態系に及ぼす影響についての理論的考察


中村 謙太郎, 高井 研

Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems.

Nakamura K. Takai K.

[Keywords] Deep-sea hydrothermal systems, Chemosynthetic ecosystems, Hydrothermal fluid chemistry, Host rock geochemistry, Geochemical modeling, Bioavailable energy yield

海底熱水生態系は、熱水に含まれる還元物質から化学エネルギーを取り出すことのできる微生物(化学合成微生物)を一次生産者とする特異な生態系である。このような生態系は、地球における初期生命の発生・進化や地球外生命を探求するための重要な手掛かりとして注目されている。熱水から供給される還元化学物質をエネルギー源として一次生産を支える生態系が、熱水の化学組成に大きな影響を受けている。しからことは容易に想像することができる。しかることは容易ではなく、これまでその全体像は得られていなかった。そもそも、熱水の化学組成(特に生命が代謝で使う硫黄、水素、メタン、鉄)のバリエーションと、それを生み出す地質

様々な地質セッティングの熱水から、代表的な好気的(上図左)・嫌気的 (上図左)代謝によって得られるエネルギー量

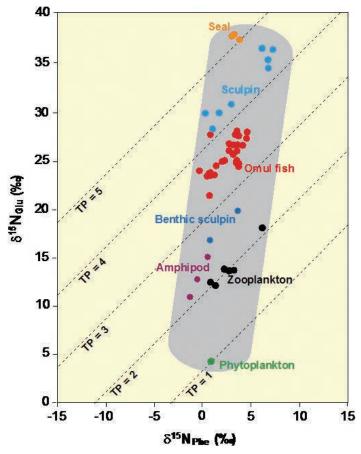
学的な背景は、これまで必ずしも系統立てて理解されてはおらず、さらにその生命活動に与える影響までをも包括した研究は、ほとんど行われてこなかった。そこで、本研究ではまず熱水化学組成のコンパイルを行い、代表的なテクトニックセッティングを網羅した89の熱水端成分のデータベースを構築し、それを用いて(1)熱水の化学組成のバリエーションとそれを生み出す地質学的な背景を考察するとともに、(2)熱水ー海水混合域において生物が利用可能な代謝エネルギーのポテンシャルを計算した。さらに、(3)その結果を実際に観測されている生態系の特徴と比較し、熱水化学組成と熱水生態系との化学的な繋がりを考察した。その結果、以下のことが明らかとなった。

- 1. ほとんど全ての熱水系において、硫黄の濃度は1mmol/L以上と高く、またバリエーションも小さい。このことを反映して、ほとんどの熱水系において硫黄酸化反応は最もエネルギー的に有利な代謝であり、熱水化学組成のバリエーションはこの傾向にほとんど影響を与えない。
- 2. 一方、熱水の水素とメタンの組成は異なる地質セッティングに起因する熱水系によって様々であり、そのバリエーションも非常に大きい。これらの元素の濃度バリエーションは、生物が利用できる代謝エネルギーに大きな影響を与えるため、生態系へのインパクトが大きい。
- 3. 実際に観測される熱水生態系の生物は、熱水の化学組成から理論的に予測される傾向と概ね整合的であることがわかった。これにより、熱水生態系と熱水化学組成の関係性を化学的に系統立てて説明できることが示された。このことは、今後の地球初期生命研究および地球外生命研究を進める上で、重要な理論的基盤を与えると期待される。

日本語原稿執筆者:中村 謙太郎(東京大学 大学院工学系研究科 システム創成学専攻)(敬称略)

Biogeosciences

環境研究および生態学研究において炭素・窒素同位体比を利用するための生化学的・生理学的基礎


大河内 直彦、小川 奈々子、力石 嘉人、田中 洋之、和田 英太郎

Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies

Ohkouchi N, Ogawa N O, Chikaraishi Y, Tanaka H, Wada E

[Keywords] Carbon isotopic composition, Nitrogen isotopic composition, Ecosystem, Food web, Chlorophyll, Trophic position, Amino acid, Animal organ

炭素および窒素安定同位体比は、地球環境や 生態系を記述する指標として広く利用されてき た。特に生態学的な研究においては、食物網解 析の重要なツールとして同位体生態学と呼ばれ る分野を生み出してきた。地球表層環境は、そ の重要なコンポーネントである生物活動による 束縛のもと、強い負のフィードバックのかかっ たシステムとなっている。その結果、地球表層 環境において中心的な役割を果たしている炭素 と窒素は、その同位体組成も含めてシステム内 できわめて微妙なバランスを保っている。した がって、環境や生態中における炭素・窒素同位 体比の分布を深く理解するためには、生物が触 媒するプロセス、つまり生化学的あるいは生理 学的な側面について立ち入らねばならない。と はいえ、生物の細胞内で起きる生化学反応や生 理学的な反応は、地球環境を研究する多くの研 究者にとって必ずしもなじみの深いものではな い。そこで本論文では、環境―独立栄養生物間、 生物―生物間の相互作用を担う細胞内の代謝に 焦点を当て、その基礎的な知見をまとめた。特 にアミノ酸の脱炭酸および脱アミノ基について 述べた。また、同位体比を環境科学や生態学に 応用する場合、生物レベルで捉えるより、化合 物レベルで捉えた方が役に立つことがある。た

アミノ酸(グルタミン酸とフェニルアラニン)の窒素同位体比から推定される,バイカル湖の生物の栄養段階。TP=Trophic Position(栄養段階)

とえば、天然環境中に広く分布するクロロフィルは、光合成独立栄養生物のみによって合成される化合物である。それゆえクロロフィルの窒素同位体比は、環境試料中から物理的に分離不可能な微生物やデトリタスなど他の生物の影響を排除し、一次生産者の窒素同位体比情報のシグナル/ノイズ比を上げることに役立つ。また、これまでバルク窒素同位体比によって推定されることの多かった生物の捕食一被食関係は、アミノ酸レベルの窒素同位体比を用いることによってさらに高い精度で推定することができる。本論文では応用例も示しながら、それらの有用性について論じる。

日本語原稿執筆者:大河内 直彦(海洋研究開発機構 生物地球化学研究分野)(敬称略)

Solid earth sciences

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

前期-中期更新世境界と酸素同位体比ステージ19のレビュー

Martin J. Head

Review of the Early-Middle Pleistocene boundary and Marine Isotope Stage 19

Martin J. Head

[Keywords] Early-Middle Pleistocene, Quaternary, GSSP, MIS 19, Chiba

2020年1月17日、千葉セクションにおいてチバニア ン階と中期更新統の基底を定義する Global Boundary Stratotype Section and Point (GSSP) が批准され た。これにより1973年に始まった国際第四紀学連合に よる一連のプロセスが完了したが、中期更新世という用 語はすでに1860年代から使われていた。千葉セクショ ン GSSP は、酸素同位体ステージ(MIS) 19c 上限の 直下に位置し,天文年代は774.1kaとなる。千葉セク ションにおける Matuyama-Brunhes (M-B) 境界の 層位は GSSP の1.1m 上にあり、前期 - 中期更新世境界 の "primary guide" となった。また、M-B 境界は、 "Early-Middle Pleistocene transition" に位置してお り、古くより中期更新世の基底を示すものとされてき た。MIS19 は、離心率が小さい期間中において、地軸 傾斜角変動サイクルによって引き起こされた。MIS19 には歳差運動の極小に伴う2つの日射量ピークが存在し、 その期間は約28~33 kyr である。MIS19c は791~ 787.5 ka 頃に始まり、8~12.5 kyr の間氷期最盛期を 含め、774~777 ka 頃の"glacial inception"により 終了した。この氷期の開始は、前期-中期更新世境界付 近に一連の気候層序学的なシグナルを残した。 MIS19b-a には、しばしば急激な気候変動で区切られ る、酸素同位体データ上で長方形の波形をもつ3つまた は4つの亜間氷期が含まれる。亜間氷期に挟まれる亜氷

UGS	Age (Ma)				
	Tree l	ne	ס	Meghalayan Stage	0
Cenozoic Erathem (pars)	Quaternary System	Holocene Series	Σ	Northgrippian Stage	0.0042 0.0082 0.0117 0.129 0.774 1.80
			_	Greenlandian Stage	
		Pleistocene Series	Upper	Unnamed Stage	
			Middle	Chibanian Stage	
			Lower	Calabrian Stage	
				Gelasian Stage	
= GS	SP				2.58

現在国際層序委員会で承認され、国際地質科学連合の執行委員会で批准されている正式な第四紀の区分。上部更新統(後期更新世)に対応する階(期)はまだ定義されていない。GSSPは Global Boundary Stratotype Section and Point (国際境界模式層断面とポイント)の略。

期は、"glacial inception"を含めて、北大西洋における氷床崩壊に伴う大西洋子午面循環(AMOC)の停止に関連しており、これはバイポーラーシーソーによって位相差をもって南極の温暖化イベントも引き起こした。MIS19b-aにおけるアジア太平洋と北大西洋・地中海域で同調した亜間氷期 – 亜氷期の振動は、AMOC に起因する熱帯収束帯の移動と赤道域の日射によるペーシングを示唆している。また、この亜間氷期 – 亜氷期の振動には、高緯度のテレコネクションも重要な役割を果たしている可能性があるが、低緯度モンスーンのダイナミクスが地域的な反応を増幅させていると考えられる。

日本語原稿執筆者: 菅沼 悠介(国立極地研究所)(敬称略)

論文出版日:2021/9/3

https://doi.org/10.1186/s40645-021-00439-2

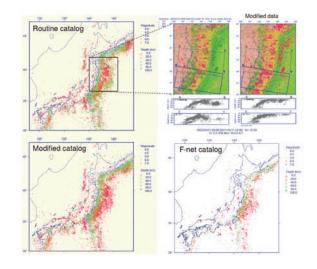
Solid earth sciences

地震カタログの不均質性の可視化:モデリング・分析・補正

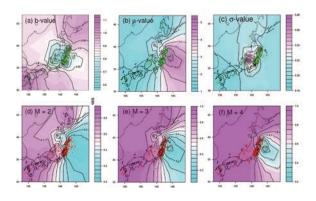
尾形 良彦

Visualizing heterogeneities of earthquake hypocenter catalogs: modeling, analysis, and compensation

Ogata Y


[Keywords] ABIC, Bias compensation, Detection rate function, Empirical Bayesian method, Data heterogeneity, Hypocenter catalogs, Location corrections, MAP solutions, Magnitude-shift, Smoothness constraints

地震計や観測網が時代とともに発展するため、検出される地震の数は時と共に増えている。一方、海岸から沖合に向かって距離が増すにつれて、小地震の検出率は減少する。地震の大きさ(マグニチュード)の定義も地震力タログ(震源データ)によって様々であり、地震計の種類や地震波の測り方で異なる。この様に、長期間にわたる地震カタログは均質でない。また、大地震の直後には余震が多発するが、地震計記録の波形が互いに重なり合い、検出されず位置が特定されない地震が多く、それらの震源決定を行うことは困難である。


このように地震カタログの不均質性は不可避であるが、様々な不均質性のうち、何が原因で偏った地震活動研究の結論が導かれるか知る必要がある。したがって、地震カタログの不均質性を明らかにし必要な補正をすることは、統計地震学における研究の基礎である。このレビューでは、さまざまな系統的誤差を明らかにするためのモデルを使った解析方法を紹介する。具体的には、(1) 震源カタログの地震マグニチュード決定に非定常なバイアスがあるかどうかを調べる、(2) 時間や位置とともに変化する地震の検出率関数を確立することにより、実際の地震活動度と観測に起因するカタログの時空間的不均一性を区別する、(3) 観測ネットワークから離れた場所での震源位置の偏りを、他のカタログとの震源位置比較により補正する、などである。

これらは経験的なペイズ法により求め、補正によって改良できた実際の例を幾つか提示する。また、地震カタログ内の系統的誤差や、異なる地震カタログによる、地震活動の異常変化について異なった結論を示した例を示す。とくに地震活動の変化についての様々な誤解を招く解析結果の例を提示する。これには、19世紀後半から20世紀初頭の大地震の世界的なカタログに、人為的なマグニチュードシフトを引き起こした問題が含まれている。

日本語原稿執筆者:尾形 良彦(統計数理研究所) (敬称略)

F-net カタログの震源を用いた気象庁カタログの沖合地震の深さ補正は、将来の発生に向けて適用することも可能である。

時空間データの不均質性。東北地方太平洋沖地震の直後1日分の余震から求めたb値分布と検出率関数のパラメータ値 μ (50%検出マグニチュード), σ と、例えばM2,M3,M4の地震が99.75%検出できている割合を示している。

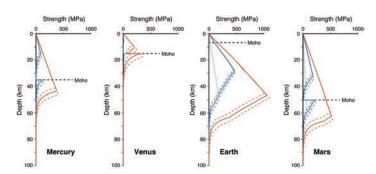
論文出版日:2021/1/21

https://doi.org/10.1186/s40645-020-00401-8

Solid earth sciences

地球型惑星の強度モデルに基づいたリソスフェアの構造と進化の考察

片山 郁夫


Strength models of the terrestrial planets and implications for their lithospheric structure and evolution

Ikuo Katayama

[Keywords] Rheological structure, Lithosphere, Elastic thickness, Terrestrial planets

地球型惑星の内部構造やダイナミクスは, リソスフェアの力学的強度と密接に関わっている。とくに岩石中の水の存在は, レオロジー的な性質に強い影響を及ぼすことが, 近年の実験的研究から報告されている。本レビュー論文では, 最新のレオロジー構成則に基づいて地球型惑星の強度モデルを計算し, 観測結果と照合することで惑星内部の構造, とくに水の存在について考察した。

いずれの地球型惑星においても、水の存在によって岩石強度は低下し、とくに粘土鉱物の存

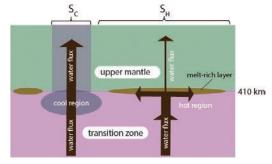
地球型惑星の強度モデル。赤はドライ条件、青はウェット条件での計算結果を示す。

在は脆性強度を著しく低下させる特徴をもつ。レオロジーモデルに基づいてリソスフェアの弾性的厚さを計算したところ、水の存在下では弾性的厚さが著しく薄くなる特徴を示す。一方、脆性塑性境界の深さは、ウェットモデルでは浅部へシフトするのに対し、粘土鉱物の存在下ではドライな条件とほぼ同程度になる傾向を示した。また、塑性強度は物質によっても異なるため、地殻マントル境界での変形が塑性変形に支配される場合、レオロジーモデルは地殻の厚さや構成物質にも影響を受ける。このように、弾性的厚さや脆性塑性境界が水の存在や物質に対し異なるセンシティビティをもつため、重力異常や表層地形の変形構造から弾性的厚さや脆性塑性境界の深さが制約できれば、惑星内部での水の存在などにアクセスすることが可能である。例えば、火星の初期地形からは非常に薄い弾性的厚さと浅い脆性塑性境界が報告されており、火星内部での水の存在を示唆しているのかもしれない。今後、惑星内での物理探査が進むことで、リソスフェアのレオロジー的な性質と組み合わせて、地球型惑星内部での水の存在や進化の理解が進むことが期待される。

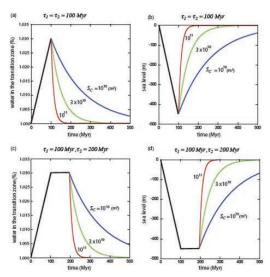
日本語原稿執筆者:片山 郁夫(広島大学 地球惑星システム学)(敬称略)

Solid earth sciences

マントル深部での融解、全地球規模での水の循環と海水量の安定性への影響


唐戸 俊一郎, Bijaya Karki, Jeffrey Park

Deep mantle melting, global water circulation and its implications for the stability of the ocean mass


Shun-ichiro Karato, Bijaya Karki, Jeffrey Park

[Keywords] habitability, ocean mass, sea-level variations, mantle transition zone, water in the mantle, deep mantle melting, water valve

地球の海水の量はマントルからの脱ガスとマントルへの水の逆 入との動的平衡によって決められている。本論文ではまず鉱物物 理学、地球物理学と地球化学という広い研究分野での全地球規模 での水の循環に関連した研究結果をまとめ、この動的平衡につい てのモデルを提出する。マントル遷移層には他の領域に比べ、地 域差は大きいものの多量の(0.1-1%)水がある。マントル遷移層 の水の豊富な領域が上部マントルや下部マントルに運ばれると部 分融解が起こる。融解によってできたメルトには大量の水が入る。 この水に富んだメルトは周りの鉱物との密度差に応じて、上かま たは下に移動する。マントル遷移層ではマントル物質が相転移す る。相転移は固体の鉱物ではある狭い深さの範囲で起こるが、同 様な構造変化はメルトでは幅広い圧力でもっと緩やかに起こる。そ のため、マントル遷移層の直上ではメルトはほとんどの場合、共 存する鉱物より密度が大きいが,直下では密度が小さい。この結 果として、水は融解による輸送によりマントル遷移層に集まる。し かし、マントル遷移層の水の量は際限なく増加するわけではない。 マントル遷移層の直上(410km)でできるメルトの密度は水の量 によって変化する。メルト中の水の量は融解の起きる温度に依存 する。マントル遷移層の低温領域では多量の水が無い限り融解は 起こらず、融解でできるメルトには多量の水が入り、軽いメルト ができる。そこで、もしマントル遷移層の多量の水のある領域が、 マントル遷移層の低温領域に移動してくれば軽いメルトができ、水 が遷移層から取り除かれる。その結果、マントル遷移層の低温領 域はマントル遷移層の水の量の上限を決める水バルブとして機能 し、マントル遷移層の水の量を自動制御する。地球全体の水の大 部分は海水とマントル遷移層に存在するのでマントル遷移層の水 の量が自動制御されておれば、海水量も自動制御され安定になっ ているはずである。海水量を反映する海水準変化の歴史を見ると 時間とともに大きく変動しているが、発散することなく一定の値 に落ち着いていることがみえる。我々のモデルはこの観測結果を うまく説明する。地球上に長い間、海水が安定に存在するのはマ ント遷移層での水バルブの効果によるものかもしれない。

410-km 境界での水の輸送を示す模式図。低温部では多量の水が上部マントルに輸送されるが、高温部では少量の水しか輸送されない。 S_C : 低温部の面積 $(=\Delta S)$ S_H : 高温部の面積

海水量の変動のモデル計算結果

 au_1 : 再ガスの時間スケール, au_1 : 脱ガスの時間スケー

ル, S_C:低温部の面積

日本語原稿執筆者: 唐戸 俊一郎 (イェール大学)(敬称略)

論文出版日:2020/12/10

https://doi.org/10.1186/s40645-020-00379-3

http://progearthplanetsci.org/index.html

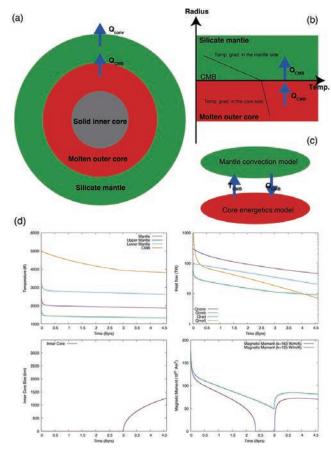
Review

Solid earth sciences

核―マントル結合系の進化:レビューと将来展望について

中川 貴司

A coupled core-mantle evolution: Review and future prospects


Nakagawa T.

[Keywords] Geomagnetic field, Earth's core, Deep mantle, Long-term evolution

本レビューでは、特に地磁気観測データならびに 古地磁気データ解析による長期間磁気変動過程(地 磁気永年変化)と、それにまつわる地球深部の諸現 象(内核の生成・成長)を説明することを目的とし た、核一マントル結合系による進化過程に関する研 究の現状と将来展望について議論している。核一マ ントル結合系の進化過程にとって、最も本質的な物 理量はマントル深部構造が色濃く反映された核―マ ントル間における熱流量であり、これまでの研究で は、この物理量を用いて、過去40億年以上にわたる 中心核が担っている磁気進化のシナリオを提唱して きた。しかしながら、核-マントル結合系の進化の 結果として説明される諸現象の十分な説明(内核の 年齢や地磁気極逆転周期)にはまだ程遠く、現在も 様々な進化シナリオが様々な研究アプローチから提 唱されている。さらに、最近の地震波解析からは、 核一マントル境界直下の核側に低速度構造が発見さ れており、この構造が核-マントル結合系の進化過 程の解明をさらに複雑にしている。

核一マントル結合系の進化過程の解明は、様々な 困難がついてまわる。しかし、最近の様々な研究者 の努力によって徐々に解明が進み、長期間磁気変動 過程が地球深部の変動と深く関連していることが明 らかになってきている。今後の展望として、以下の 2点を指摘する。

1. 地球形成過程との関連を取り入れることで,進 化過程の初期条件(マグマオーシャンの固化の影響 やいつプレートテクトニクスが開始されたのか?) の影響を解明し,惑星形成論と固体地球物理学との 融合させた研究の展開を行う必要がある。

(a) 核一マントル結合系の概念図;(b) 核一マントル境界における 温度構造と熱流量の関係性;(c) 核一マントル結合系のフィード バックの概略図;(c) パラメータ化マントル対流理論と核進化モデルを結合させた核一マントル結合系進化モデルの計算例(左上:マントル熱構造;右上:マントル熱収支;左下:内核サイズの進化;右下:核内対流による磁気双極子モーメントの強さ)。磁気双極子モーメントについては、核合金物質に関する2つの熱伝導率を考慮(163W/m/K)と125W/m/K)している。

2. 地球を取り巻く磁場は、我々生命体を太陽からの有害な放射線や大気の剥ぎ取りに対する盾の役割をしているため、地球深部過程と表層環境の長期間進化にはなんらかの関連性があると考えられる。その関連性を解明することで、地球が多圏相互作用系の結果として「生存可能な惑星」として位置付けられる理由の追求のきっかけを作るために、古環境変動一固体地球物理学の融合研究の発展が今後重要なポイントとなる。

日本語原稿執筆者:中川 貴司(香港大学/広島大学)(敬称略)

論文出版日:2020/10/6

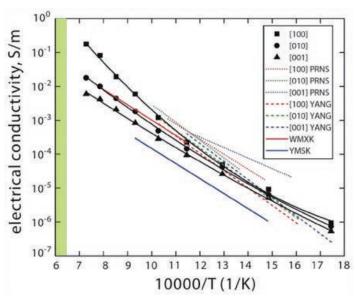
https://doi.org/10.1186/s40645-020-00374-8

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

水素によって促進された鉱物の電気伝導度について


唐戸 俊一郎

Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals

Shun-ichiro Karato

[Keywords] Electrical conductivity, Hydrogen, Water in the mantle, Point defects

鉱物の電気伝導度は、鉱物に溶け込んだ水素 によって促進されることは今から40年ほど前に 提案され、その後、多くの実験がなされてきた が、実験結果には多くの混乱がみられた。本論 文では、混乱の原因を水素の挙動に着目して (特にカンラン石について)分析する。水素は鉱 物中で早く拡散するため、鉱物中に溶けた水素 は容易に逃げる。また、水素はいたるところに 存在し、水素(水)を加えなかった実験でも、 水素が鉱物中に融けこむこともある。後者はあ まり注目されていなかったが、結果に大きな影 響を与える。そこで、水素が鉱物の電気伝導度 などの性質にどう影響するかの実験では多くの 注意が必要である。発表された論文の中でこの ような点に注意が払われたものを選べば、今ま で出版された論文の間に大きな矛盾はない。唯 一存在する「矛盾」は高温でのデータと低温で のデータの違いである。これは、高温と低温で

水素を含むカンラン石の電気伝導度。低温と高温で系統的な違いがみえる。高温での結果は地球物理学的に推定されたアセノスフェアの電気伝導度と調和的である。

電気伝導のメカニズムの違いとして説明される。高温での実験で水素の逃散を防ぐには高周波,低電圧での測定を行えばよい。このようにして行われたカンラン石についての高温での実験結果を使うと,地球物理学的に推定されたアセノスフェアの電気伝導度はその異方性もふくめ,水素を含んだカンラン石によるものとして説明できる。遷移層の電気伝導度も同様に、水素を含んだ鉱物によるものとして説明できる。

今後の研究のテーマとして最も重要なのは下部マントル鉱物の電気伝導度への水素の効果である。今までの下部マントル鉱物の電気伝導度の研究はすべて直流での測定であり、鉱物中の水素の量も測定されていなかった。直流での測定では水素の効果を検知することはできない。最近、ブリッジマナイトなどの鉱物にかなりの水素が溶けることが示された。これらの鉱物の電気伝導度に水素がどのような影響を与えるかと研究すれば、地球物理学的測定と比較することから、下部マントルの水素の量が推定できるだろう。

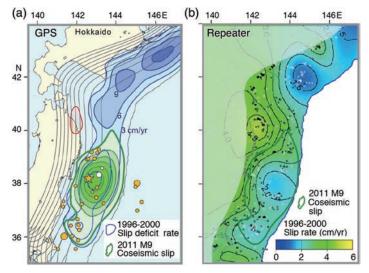
日本語原稿執筆者:唐戸 俊一郎(イェール大学)(敬称略)

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

繰り返し地震の検出と断層スロースリップ推定への応用


内田 直希

Detection of repeating earthquakes and their application in characterizing slow fault slip

Uchida N

[Keywords] Repeating earthquake, Interplate slip, Fault creep, Aseismic slip

繰り返し地震は、クリープ(スロースリップ) が卓越する断層上に存在する地震性のパッチで の、周囲のクリープによる地震間の応力の蓄積 と地震時の応力の解放によって生じる。この繰 り返し地震と断層クリープの関係は、断層での スロースリップの状況をモニタするために利用 できる。つまり繰り返し地震は、断層に埋め込 まれたクリープメータとして用いることができ る。本レビューでは、このような目的での繰り 返し地震の利用のために重要な同じパッチの破 壊を確実に選び出す方法、および繰り返し地震 によるスロースリップの推定の特徴について紹 介する。繰り返し地震の選定には、地震波形の 相似性あるいは震源位置の同一性が基準として 用いられる。震源位置を基にした抽出では、す べり域の一致の確認のために, 断層サイズに比

東北沖地震前のプレート境界固着状況の繰り返し地震(b) および GPS データ(a) におよる推定(Nomura et al. 2017に加筆修正)。

べ震源位置の精度が十分高いことが必要である。一方,波形相似性を利用した抽出では,隣接した地震との区別のために,十分高い周波数範囲の波形を使用する必要がある。適切でない抽出基準は,誘発された地震など同じ場所の繰り返し地震でないものを含んでしまい,スロースリップの推定に大きな誤差を与える。適切な抽出基準の設定には,繰り返し地震の発生間隔や活動の継続期間も有力な情報となる。繰り返し地震は,測地学的な推定とは独立な断層クリープの推定を提供し,両者が利用できる場合,その結果は調和的な場合が多い。また,横ずれ断層における断層深部や沈み込み帯での海溝近傍など,測地学的データによるすべり推定の解像度が限られることが多い領域で特に有効である。繰り返し地震によるスロースリップの推定は,測地学的な推定に対して,粘弾性的な変形や間隙弾性反発など,大規模な地震の場合顕著となる断層の外で起きる変形による影響を受けないという利点もある。一方,弱点としては,断層面上での不均一な分布や地震の規模からすべり量を推定するために必要なスケーリング則の精度が挙げられる。異なるスケーリング則間には推定されるすべり量に大きな差が存在する。断層におけるすべり過程では,地震による速いすべりだけでなく,スロースリップが重要な役割を担っており,繰り返し地震解析は,プレート間の定常すべり,余効すべり,自発的な周期的すべりなどの断層でのゆっくりとしたすべり現象の解明に大きく役立っている。

日本語原稿執筆者:内田 直希(東北大学 理学研究科)(敬称略)

http://progearthplanetsci.org/index.html

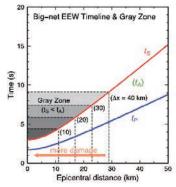
Review

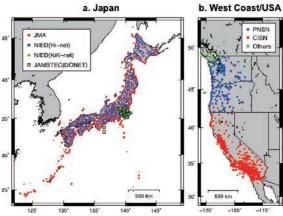
Solid earth sciences

緊急地震速報:"強震が到達するまでの数秒間"が意味することは?

田島 文子、林田 拓己

Earthquake Early Warning: what does "seconds before a strong hit" mean?


Tajima F, Hayashida T.


[Keywords] Earthquake early warning, effective preparation for seismic safety at recipients' sites, short-wavelength ground motion variation

緊急地震速報(EEW)システムは、地震波をリアルタイ ムで観測することにより地震の発生を検知し、震源位置・マ グニチュード・発生時刻などのパラメータを瞬時に決め、破 壊的な地震波エネルギーが予想される場合には、該当する地 域に地震動が到達する前に警報を出すことを意図したシステ ムである。現在、広域をカバーする EEW システムは数カ国 で稼働しており、日本では、国中の地震活動を観測する世界 最先端のシステムが2007年から稼働している。2011年にマ グニチュード9の東北沖地震が発生した時は、広範囲に EEW を発信することができた。 この地震による死者・行方不明 者の数は、今世紀に多くの死傷者を出した地震(Mw ≥ 6.6) の中では、地震の規模に比べかなり少ない。他の国々の多く は、死傷者が少なかったことの主な理由として、高度に整備 された広域の EEW システムが稼働したことによるとみなし、 日本をモデルにした EEW システムを設置することを計画し ている。しかしながら、日本の地震災害や災害軽減のための 環境作りの歴史は他国とはかなり異なっている。 加えて, 広域の観測網(以降,ビッグ・ネットと呼ぶ)からのデータ を使う EEW システムには、いろいろ限界がある。 従って、 日本モデルのシステムが他国で有効に機能するためには、多 くの要素を考慮する必要がある。本論文では、EEW 開発に つながる研究がどのように発展し、システムが現在どのよう に機能するかをレビューする。また、ビッグ・ネットの観測 点間隔よりも短い波長で地震動が変化することも示す。しか しながらビッグ・ネットの観測点密度を上げてより細かいモ デルを作ることに意味がある訳ではなく、どのような状況の 地震動にも耐えうるように環境を整えることが、システムの 活用になることを強調したい。緊急地震速報を受ける各サイ トで備えを十分にすることは基本的に重要で、その重要さは 観測点を増やし解析方法を多少改善しても変わらない。EEW に関わっている研究者やエンジニアは、システムがどのよう に機能し、災害軽減に役立てるにはどのような事前の備えが 必要かの広報に努めることが望まれる。

日本語原稿執筆者:田島 文子

(カリフォルニア大学アーバイン校 物理・天文学科)(敬称略)

(上図)

ビッグ・ネットの緊急地震速報のタイムラインと 強震動が 警報の前に到達するグレイゾーン。縦軸は地震発生時刻からの経過時間,横軸は震央距離 (D)。 グレイゾーンは,異なった観測点間隔 (Δ x = 10, 20, 30, 40km) の観測網毎に示されている。例えば,間隔が20kmの観測網の場合,グレイゾーンは震源から半径約17kmの地域で,そこでは警報の前に強震が到達し,ゾーンの外よりも強い揺れがより大きな被害をもたらす可能性がある。

(下図)

ビッグ・ネットの観測点分布の例:a。日本における観測点間隔は国中でほぼ20km かそれ以下である。このシステムでのグレイゾーンは、震源から約17kmである。; b。米国・西海岸地方の観測点間隔は均質ではなく、ロスアンジェルス、サンフランシスコ、シアトルのような人口密度の高い都市部では約10km、人口密度の低い地域ではそれよりもずっと大きい。

論文出版日:2018/10/10

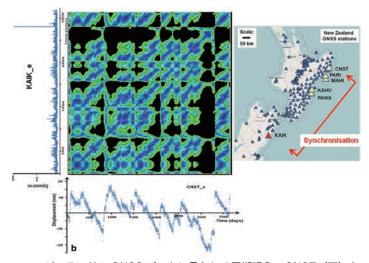
https://doi.org/10.1186/s40645-018-0221-6

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

GNSS データの非線形ダイナミクス解析:定量化,先行現象と同期現象


Hobbs B, Ord A

Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronization

Hobbs B, Ord A

[Keywords] GNSS time series, Nonlinear analysis, Dynamical systems, Recurrence plots, Recurrence quantification analysis (RQA), Cross and joint recurrence plots, Crustal deformation, Precursors, Synchronisation

固体地球のテクトニクスは、地球内部を構成 する多くの要素間の複雑な非線形相互作用に よって支配されている。しかし、GNSS を始め とする近年の精密観測をもってしても、観測に より得られる地表変位の時空間的なパターンか ら、背後でそれを駆動している複雑な相互作用 系のダイナミクスを解き明かすことは大変困難 な課題である。本論文において、著者らは、非 線形システム解析の手法をニュージーランドの GNSS 座標値データに適用し、こうした問題に 取り組んだ。非線形システムの特徴はデータか ら生成されるリカレンスプロットによって表現 され、システムの不変量として埋め込み次元 (embedded dimension), 最大リャプノフ指数 (maximum Lyapunov exponent), エントロ ピー等が抽出される。さらに、再帰定量化解析 (RQA) によって得られるいくつかの定量的な 指標により非線形システムは特徴づけられる。

ニュージーランドの GNSS データに見られる同期現象。CNST(下)と KAIK(左)の座標値(東西成分,トレンド除去済み)のジョイント・リカレンスプロット(中央)。大規模なスロースリップイベント(~800日,~2100日,330日)の直前の250~400日前の期間に対角線上に相関が集中し、同期現象が起きていることを示している。

GNSS データを解析した結果、データ中の顕著な変化に先行していくつかの RQA 指標に変化が現れることが見出された。また、600km 離れた2地点の座標値データに同期現象が見つかった。この同期現象は大きな変位イベントの250~400日前から現れ、イベントの直前で見られなくなる(図)。これらの結果は、観測された地殻変動の背後に非線形の相互作用システムが存在することを示唆する。本論文では、GNSS データを非線形システムの出力として見直すことにより、通常の線形応答を仮定した解析では見えない複雑な相互作用系の振る舞いの一端を垣間見ることができた。こうした非線形相互作用系の振る舞いの理解をより多くのデータの解析を通して進めること、さらに、非線形相互作用の物理的実体を解明していくことは今後の課題である。

日本語原稿執筆者:鷺谷 威(名古屋大学減災連携研究センター)(敬称略)

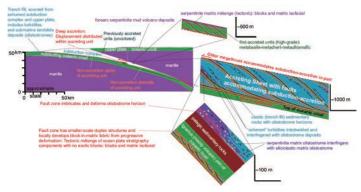
http://progearthplanetsci.org/index.html

Review

Solid earth sciences

カリフォルニアフランシスカンコンプレックスにおける海洋プレート層序の構造的形態と変化: メランジュの起源と沈み込み – 付加過程に関する知見

Wakabayashi J


Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

Wakabayashi J

[Keywords] Ocean plate stratigraphy, Subduction complex evolution, Subduction megathrust slip accommodation, tectonic and sedimentary mélanges

沈み込む海洋プレートから沈み込み一付加体への物質の付加は、海洋プレートが誕生されてから海溝に到達するまでの履歴を記録した岩石群を形成する。これらの岩石群は、下位から上位に向かって、海洋底を構成する火成岩、遠洋性堆積物(チャートや石灰岩)、海溝充填砕屑性堆積岩(ほとんどが砂岩、泥岩/頁岩)よりなり、海洋プレート層序(Ocean Plate Stratigraphy: OPS)と呼ばれてきた。OPSの付加の過程で、メガスラストの滑りは覆瓦状断層や広範囲に渡る歪でまかなわれ、OPSが圧縮・繰り返す一方、異なる時期に付加した OPS は非付加体メガスラスト層準(non-accretionary

Accretion of Ocean Plate Stratigraphy

沈み込み帯周辺で見られる海洋プレート層序の付加作用を示した地殻断面 模式図。

megathrust horizons) によって隔てられている。カリフォルニアのフランシスカン沈み込みコンプレックスは、1.5 億年以上の期間に渡って間欠的に付加したもので、非付加体メガスラスト層準により隔てられたさまざまな特徴をも つ OPS ユニットを取り込んでいる。フランシスカン OPS のほとんどは,下位より,中央海嶺玄武岩(MORB), チャート,海溝充填砕屑性堆積岩から構成されている。海溝充填砕屑性堆積岩は様々な割合を持つタービダイトと珪 長質砕屑物や蛇紋岩の基質を有するオリストストローム(堆積性メランジュ)で構成されている。量的には、ほとん どのフランシスカン OPS において海溝充填堆積物が卓越するが、火成岩や遠洋性堆積岩が卓越するユニットもある。 石灰岩に覆われた海洋島玄武岩や深海性の蛇紋岩化した橄欖岩のスラブは、MORB-チャート集合体よりも少ない。 最も初期に付加した OPS は,沈み込み帯域(supra-subduction zone)に類した場で形成されたメタベイサイトよ りなり、これは少量の変塩基性岩や変チャートが覆瓦状になっているが、砕屑岩の要素を含まない。[KU1] フランシ スカン OPS の変形の大部分は,広範囲に渡る歪の分散というよりむしろ断層沿いに局所化している。この変形によ り部分的にブロック・イン・マトリックス構造を有する構造性メランジュが生じているが,砕屑性 OPS の要素の一 部を構成する堆積性メランジュと対照的である。そのような構造性メランジュは,オリストストローム由来のブロッ クや基質を含んでいる可能性がある。フランシスカンにおける沈み込みと OPS の付加は,約1.65~1.7億年前に島弧 地殻において始まり、数千万年間に渡る付加がほとんどもしくは全くない期間を経た後に、中央海嶺玄武岩や海洋性 玄武岩が付加した。沈み込み開始に引き続き、海嶺が海溝に近づくが、1.2~1.25億年の沈み込み前に休止し、その 後,0.95億年前までに,沈み込んだ海洋地殻の年代が次第に古くなっていった。0.95億年前以降,太平洋 – ファラロ ン拡大軸が到達して沈み込みが停止し、トランスフォーム型プレート境界に変化するまで、海洋地殻の年代は次第に 若くなっていった。

日本語原稿執筆者:針金 由美子(產業技術総合研究所 地質情報研究部門)(敬称略)

論文出版日:2017/7/7

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

スラブ変成作用の地震波によるイメージングと稍深発スラブ内地震の発生原因

長谷川 昭, 中島 淳一

Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes

Hasegawa A, Nakajima J

[Keywords] Internal slab structure, slab metamorphism, dehydration-related embrittlement, intermediate-depth earthquake, intraslab earthquake, earthquake generation mechanism, subduction zone

稍深発地震が発生する深さでは、法線応力が非常に大きくなり、そのため断層強度も極めて大きいはずである。地震が発生するためには、それを超えるせん断応力が必要であるが、実際にそのように大きなせん断応力が働いているとは考え難い。したがって、断層強度を低下させる何らかの特別なメカニズムが働いているはずである。そのメカニズムとして挙げられている有力な説は、1)脱水脆性化、2)クリープの熱的不安定の2つである。一方、近年の地震観測網の高密度化により、沈み込むスラブの内部構造をもイメージングすることが可能となってきた。それは、稍深発地震の発生メカニズムについて、決定的な観測的証拠を提示しつつある。本論文では、スラブ内の地震波速度構造と稍深発地震活動に関する最近の研究についてレビューし、稍深発地震の発生原因について考察した。

稍深発地震は、深さ約40-180kmの範囲で二重地震面を形成する。そ れはスラブ内で含水鉱物の存在可能範囲、とりわけ脱水反応境界付近に 集中して地震が発生するからである。さらに、最近の研究で、二重地震 面の上面の地震が、スラブ変成作用と密接に関係して特徴的な空間分布 を示すことが明らかになった。冷たいスラブでは、沈み込みに伴う地殻 の P-T path が、 H_2O を多く吐き出し、総体積変化が正となる相境界 を通過する。このことは、相境界付近で活発な地震活動を生じさせると 期待される。期待通り,スラブ表面の80-90km の等深線に沿った帯状の 地震活動の集中(上面地震帯)が、冷たいスラブの代表である東日本下 の太平洋スラブの地殻内に見出された。上面地震帯の位置は地殻内の相 境界付近と推定され,脱水反応により吐き出された H2O で間隙圧が上昇 し、断層強度が低下したことにより形成されたと推定される。実際、ス ラブ地殻の地震波速度は、上面地震帯の深さまで低速度であり、それ以 深で高速度である。これは,脱水反応の相境界がこの位置にあることを 示す観測的証拠である。同様のスラブ地殻の地震波低速度層とその下限 の深さまで分布する地震活動は、他のいくつかの沈み込み帯でも見出さ れた。地震波トモグラフィは、東北日本と南米チリ沈み込み帯で、二重 地震面の下面に沿って地震波低速度層が分布することも明らかにした。た だし、蛇紋岩化したマントルから予測される値とは異なり、S波は低速度 でない(つまり、Vp/Vs比は大きくない)。この特異な構造をつくる原因 は良く分かっていないが、地震波速度異方性と孔隙のアスペクト比が原 因であるかも知れない。いずれにしても、下面に沿って顕著な P 波低速 度層が分布することは、含水鉱物/H2Oがそこに存在していることを示 唆する。これらの観測事実は,脱水脆性化説を強く支持する。ただし, H₂O で局所的に上昇した間隙圧は断層のせん断破壊強度を低下させるこ とで破壊の開始に貢献し、一方で断層破壊の進展には熱的不安定が主と して貢献するという、言わば2つの複合したメカニズムが原因である可能 性も残されている。いずれにしても、稍深発地震の発生に H2O が重要な 役割を果たしていることは、ほぼ間違いないように思える。

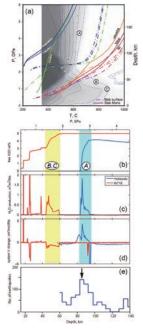


図1 (a) スラブ地殻の P-T path。6つの沈み込み帯について示す。 H_2O 含有量を重量%で影をつけて示す。(b) H_2O 含有量の積算, (c) H_2O 供給量, (d) 総体積変化の深さ変化。北海道を冷たいスラブの代表として青線で、紀伊を温かいスラブの代表として赤線で示す。(c) で紀伊は10倍して表示。(e) 北海道中部の地殻内地震の発生頻度の深さ変化。

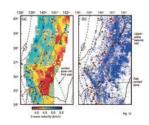


図2 太平洋スラブ地殻内の(a) S波速度の分布,(b) 地震の分布。上面地震帯をピンクで影をつけて示す。黒破線は太平洋スラブ表面の等深線。太平洋スラブとフィリピン海スラブの接触域を2本の緑破線で示す。

日本語原稿執筆者:長谷川 昭(東北大学 大学院理学研究科 地震・噴火予知研究観測センター)(敬称略)

論文出版日:2017/4/10

https://doi.org/10.1186/s40645-017-0126-9

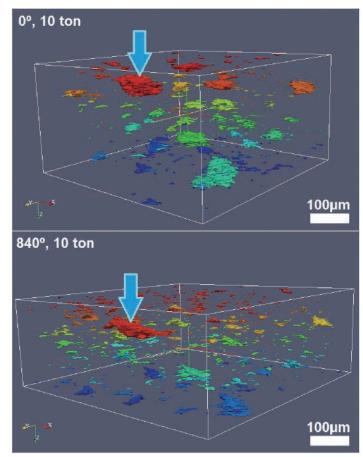
http://progearthplanetsci.org/index.html

Review

Solid earth sciences

高圧下での三次元イメージング:GSECARS ビームラインでの高圧 X 線マイクロトモグラフィー 開発におけるこの10年

Yu T, Wang Y, Rivers M L


Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS

Yu T, Wang Y, Rivers M L

[Keywords] High pressure, Tomography, Synchrotron, Density, Rotation, Shear, Non-crystalline, Elasticity

高圧 X 線マイクロトモグラフィー (HPXMT) 装置は、シカゴの第三世代放射光施設 Advanced Photon Source における GSECARS (Geo-SoilEnviroCARS; https://gsecars.uchicago. edu/) のビームラインにて、2005年より供用 が開始されている。強力な放射光 X 線と X 線 モード(白色/単色)の素早い切替(白色は X 線回折用、単色はイメージング用)との組み合 わせにより、HPXMT 測定は高温高圧下での物 質の体積や三次元組織・微細構造といったユ ニークな情報をもたらしてくれる。この装置で は上下の対向アンビルを独立に回転させること ができるため、試料に剪断応力をかけることが できる。これにより高温高圧下での剪断変形実 験を行うことが可能である。さらに HPXMT 装 置は試料が結晶質か非晶質かを問わず物質の高 温高圧下における物性を調べる上で強力なツー ルとなる。この10年間に、ユーザーからの要望 に応えるべく技術開発、装置性能の向上や測定 手法の追加など多くの改良が実施されてきた。 本稿では、HPXMT装置の最新のレポートを行 い、この装置を用いた研究成果のレビューおよ び今後の開発展望について述べる。

日本語原稿執筆者: 寺崎 英紀(大阪大学) (敬称略)

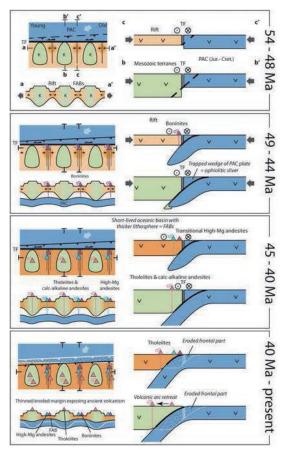
剪断変形下におけるオリビン中の FeS メルト分布の変化

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

伊豆・小笠原・マリアナ弧の沈み込み初期過程に着目したフィリピン海プレートの誕生,進化,消滅


Lallemand S

Philippine Sea Plate inception, evolution and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

Lallemand S

[Keywords] Philippine Sea Plate, Izu-Bonin-Mariana, subduction initiation, boninite, fore-arc basalt, serpentinite mud volcano, back-arc basin, transform fault, arc terrane, plume-ridge interaction

フィリピン海プレートに関する従来の研究成果を総括し、そ の結果に基づいてこれまで提唱されてきたフィリピン海プレー ト形成モデルを検証した。その結果、フィリピン海プレートの 地史は、以下のようにまとめられる。(1) 60~65Ma (6500~ 6000万年前)頃にイザナギスラブが東アジア縁辺下で剥落し たことにより、沖大東プルームの形成、古フィリピン海プレー ト(中生代に存在)の分裂, 古フィリピン海プレートと太平洋 プレートの境界をなしていたトランスフォーム断層での収束運 動の開始、伊豆・マリアナ・小笠原弧の沈み込みの開始という 一連の過程を経て、最終的にフィリピン海プレートの誕生に 至った。(2) 古フィリピン海プレートの初期分裂は54~48Ma にプルーム活動の影響下で起こり、長寿命の西フィリピン海盆 やその他の短命の海盆群が形成された。これらを構成していた 地殻の一部は"前弧玄武岩"と称されている。(3) 古トランス フォーム断層境界で地殻の短縮がはじまり、やがて52~50Ma には太平洋プレート内部に逆断層が生じて、太平洋プレートは 新しく生まれたフィリピン海プレートの下へ沈み込みを開始し た。当時のフィリピン海プレートは、厚い中生代の地殻と薄い 海洋リソスフェアとで構成されていた。(4) 49~48Ma 頃に 発生した最初のマグマはボニナイトマグマであった。上盤プ レート上の海底拡大軸近傍に存在していた若い海洋性地殻の下 で、沈み込みはじめた太平洋の地殻の脱水が起こりマントル コーナーの浅い部分から上昇したマグマである。(5) 太平洋の 地殻が地下深部まで達し、上盤側の海盆部も冷えてリソスフェ アが厚くなった44~45Ma頃、噴出する溶岩の組成は高マグ ネシア安山岩へ, さらに島弧ソレアイト, カルクアルカリ系列 安山岩へと変わっていった。(6) 新第三紀の間に伊豆・小笠 原・マリアナ弧の前面150~200km 分は造構性浸食によって 削られ、当初フィリピン海プレートに付加していた太平洋オ フィオライトの大半もしくはすべては失われた。その結果、現

IBM (伊豆小笠原マリアナ) 弧の沈み込み開始と初期進化の概念モデル。多様な火成活動を地球ダイナミクスの視点を強調して示した。"40Ma-present" (4000万年前~現在) の図中の白線は、それ以前"40-45Ma" (4500~4000万年前) のプレート境界と上盤プレート下面の位置を示す。

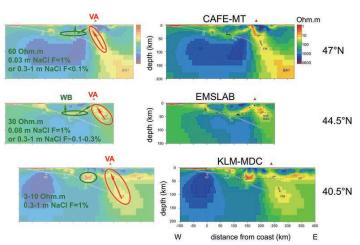
TF: トランスフォーム断層,PAC: 太平洋,FAB: 前弧 玄武岩

在の海溝陸側斜面では,前弧玄武岩,ボニナイト,初期の火成岩類が露出している。(7)マリアナ前弧で見られる蛇 紋岩泥火山は古フィリピン海プレートと太平洋を分けていたトランスフォーム断層の上に形成された可能性がある。

日本語原稿執筆者:沖野 鄉子(東京大学 大気海洋研究所 海洋底科学部門)(敬称略)

Solid earth sciences

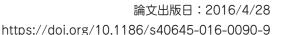
沈み込み帯前弧におけるマントルの加水作用と塩素に富む流体


Reynard B

Mantle hydration and CI-rich fluids in the subduction forearc

Reynard B

[Keywords] Subduction, Fluids, Forearc mantle, Salinity, Chlorine


前弧域では、水に富む流体が沈み込むスラブ からその熱的状態に依存した速度で放出されて いる。散逸しようとする流体は、変形したプ レート境界や、上盤側プレートのモホのような 浸透率が低い障壁にぶつからない限り、垂直に 上昇しようとする。プレート境界やモホに沿っ た流体のチャンネリングは、海洋地殻内の流体 過剰圧の発生,流体からの石英の析出をもたら し、微動の発生を伴う低ポアソン比領域を形成 する場合がある。沈み込むプレートの上、前弧 楔形マントルは、沈み込むプレートの脱水によ る流体と超塩基性岩類との反応が盛んに起こる 場であり、その結果、広範な蛇紋岩化が起こる。 プレート境界は、おそらく蛇紋岩化と関連して 力学的に切り離されており、その結果、前弧楔 形マントルは、冷却し、蛇紋岩化して浮力を持 つ可能性のある部分として, マントルの対流か ら分離されている。地球物理学的研究は、前弧 マントルでの流体と岩石の反応を探る優れた方 法であり、岩石の性質が実験的に制約されてい る場合には、流体の移動や流体岩石反応を地球 物理学的データから推測することが可能になる。 地震波速度の解析により、前弧マントルは、熱

高塩濃度流体が存在している可能性のある場所と、温泉水と火山弧の混合経路。カスケードの沈み込み帯のMT法による電気比抵抗断面(Wannamaker, et al. 2014)を右に、その解釈を左に示す。最も南の断面が、前弧域で最も高い電気伝導度(緑の楕円)を示す。この値は、図2のグラフを使うと、最大で1モル濃度のNaCI流体の存在を示すと解釈される。他の2つの断面で、前弧の電気伝導度がより低くなっていること(緑の楕円)は、スラブの脱水による低塩濃度流体によって、流体の濃度が1桁以上薄められているか、または流体分率が1桁以上低いことを示す。これは前弧の上の浅部帯水層(例:ウェストパージニア州オレゴンのWillamette 盆地)か、または火山弧域に排水された結果であると考えられる(緑の矢印)。さらに東部の高電気伝導度領域は、火山弧下のメルトに富む領域に起因すると考えられる(赤の楕円)。

い沈み込み帯では蛇紋岩化度が高いのに対し、最も冷たい沈み込み帯ではわずかしか蛇紋岩化していないことが明らかになっている。これは、沈み込み帯が温かいほど、熱水変質を受けた海洋リソスフェアの脱水分解により放出される水の量が多くなるためである。岩石物理学的な制約に基づく地震データの解釈には、異方性による複雑な効果のために、限界が生じている。この異方性は、地震データの解析と解釈の両方において評価される必要がある。電気伝導度は、沈み込みの流体量と温度が上昇するほど高くなる。しかし、広域的な蛇紋岩化が最初に実証された最も高温の北部カスケードの前弧マントルは、中程度の電気伝導度しか示さない。これは、電気伝導度は沈み込み帯の熱的状態のみならず、その熱的状態にあった時間にも依存し、流体の塩濃度によっても変わり得るためである。蛇紋岩生成によって生じた高 CI 濃度の流体と火山岩の源岩との混合を考えることで、初生的なマグマ包有物の地球化学的性質が説明できる。地下深部の高 CI 濃度流体の特徴は、前弧の温泉にも認められる。これらの観察は、前弧マントルと温泉熱水系または火山弧との間で、流体の循環が存在していることを示唆する。このような循環は、近年の地磁気地電流法から得られる描像によっても証明される。

日本語原稿執筆者:中村 美千彦(東北大学 大学院理学研究科 地学専攻)(敬称略)

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

地球型惑星や衛星の中心核固化様式とダイナモ活動への示唆:鉄の雪が降り硫化鉄が浮き上がる 内核成長

Breuer D, Rueckriemen T, Spohn T

Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons

Breuer D, Rueckriemen T, Spohn T

[Keywords] Core crystallization, Dynamo generation, Iron snow, Terrestrial planets, Thermal evolution

近年の惑星探査や数値計算によって、地球型惑星や衛 星の深部構造の理解は飛躍的に向上した。本稿ではこれ らの天体の, 鉄(Fe)を主体とする中心核の組成や状 態に関する理解をレビューするとともに、水星、月、火 星、そして木星衛星ガニメデの磁場の進化に関する最新 の知見をまとめる。この中では、地球中心核における "鉄の降雪"や硫化鉄(FeS)の結晶浮上といった、古 典的な描像とは異なる結晶化プロセスが示され、中心核 の進化に重要な役割を果たすものと認識されている。核 の組成が Fe と FeS の共融組成よりも Fe に富む場合に は、地球中心核よりも低い圧力領域では"鉄の降雪"が 発生し、核の中心ではなく核マントル境界(CMB)付 近で Fe が固化し始める。一方で核の組成が Fe と FeS の共融組成よりも硫黄(S)に富む場合には、FeS の結 晶化が発生する。この結晶化が核の中心付近で生じるか CMB 付近で生じるかは、核が持つ温度構造と圧力に依 存する。こうした多様な結晶化プロセスは、核内部のダ イナミクスや磁場の生成に様々な影響を及ぼす。月で は、古月磁気データにもとづいて42.5億年~35億年前 に核ダイナモを起源とする強い磁場が存在し、その後に 急速に弱まったことが示唆されている。また、アポロ地 震計データの再解釈によって、月の核ダイナモは従来の 予想よりも長期間存続し、内核も存在していたことが示 唆されている。水星とガニメデのダイナモと磁場発生 は、(核の組成が Fe と FeS の共融組成よりも Fe に富 むならば) 比較的最近に生じた中心核での"鉄の降雪" によって引き起こされた可能性がある。水星の初期のダ イナモ活動は、これらとは異なる要因で生じたと推定さ れる。メッセンジャー探査機のデータによれば、水星の 中心核がケイ素を含む還元的な環境で形成し、核の結晶 化がさらに複雑な過程で進んだことが示唆される。進化 史の初期に強い磁場を持っていた火星は、固体 Fe の内 核形成がまだ始まっていないようである。

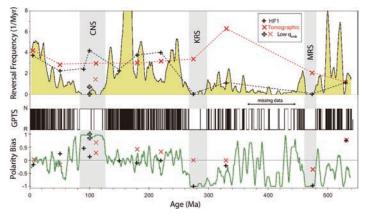
Fe-FeS 組成系における中心核の結晶化シナリオ。赤・青・緑の 丸はそれぞれ固体の Fe, FeS, Fe₃S を表し、丸から伸びる短い 線はその成分の移動方向を示す。赤線は核において推定される温 度分布、青点線は核の融点分布を表す。黒線はSの存在度。実線 と破線の矢印はそれぞれ組成対流と熱対流を示す。(a) 地球のよ うな、Fe に富む内核が中心から成長する場合。硫黄は外核に濃 集して組成対流を引き起こす。(b) CMB で発生した Fe の雪が 沈降する場合。沈降した Fe は深部で再溶融するとともに組成対 流を引き起こす。降雪域が時間とともに広がり中心付近まで達す ると, 固体 Fe の内核が形成される。(c) FeS の結晶が CMB へ と浮上し、固体の FeS 層を形成する場合。下層の流体領域は Fe に富み対流が生じる。(d) CMB 付近の固体の FeS 層が成長する 場合。FeS層の成長に伴いFeが吐き出されることによって、(c) と同様な組成対流が生じる。(e) 中心付近で析出した FeS の結 晶が浮上し再溶融する場合。再溶融した領域では対流が生じる。 FeS 結晶が CMB まで広がると固体の FeS 層が形成される。(f) CMB付近でFe₃Sの雪が生じる場合。降雪は核全体に広がり、最 終的には中心に固体 Fe₃S の内核が形成される。(g) 固体 Fe₃S の内核が成長するが、その上部では対流が生じない場合。

日本語原稿執筆者:木村 淳 (東京工業大学 地球生命研究所)(敬称略)

論文出版日:2015/11/16

Solid earth sciences

より現実的なコアーマントル境界の熱流束パターンへ向けて:惑星ダイナモの多様性の原因


Amit H, Choblet G, Olson P, Monteux J, Deschamps F, Langlais B, Tobie G

Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos

Amit H, Choblet G, Olson P, Monteux J, Deschamps F, Langlais B, Tobie G

[Keywords] Magnetic field, Dynamo, Core-mantle boundary, Heat flux

惑星のダイナモに対するマントルによる影響 は、数値ダイナモシミュレーションのコアーマ ントル境界(CMB)に不均質な熱流束パターン を与えることによって調べられてきた。そうし たパターンは二つのカテゴリーに分類される。 一つは現実的な条件下でのシミュレーションの ために、地球のマントル最下部の地震波トモグ ラフィーモデルのパターンに比例するものを与 える場合、もう一つは基本的な物理を理解する ために単一の球面調和関数のパターンを与える 場合である。しかしながら、現実の下部マント ルダイナミクスは非常に複雑であり、これらの CMB 熱流束モデルは非常に簡略化されたもの である。そこで、われわれはこれら二つのカテ ゴリーに当てはまらない新たな CMB 熱流束パ ターンを数値ダイナモに与え, それにより新た

上:地磁気極性時間スケール(GPTS)データベース(下部バーコード)に基づく地磁気逆転頻度(黄色)とダイナモモデルの逆転頻度との比較。時間変化する CMB 熱流束パターンのモデルは黒プラス記号で,現在に固定されたトモグラフィパターンのモデルは赤十字で示す。白亜紀超正磁極期,キアマン超逆磁極期,モイロ超逆磁極期は灰色の陰影で示す。

下:規格化された正・逆磁極期の時間差で定義された極性の偏り。

に生じる下部マントルの複雑性の説明を試みる。現在の地球では、その新たなパターンは、温度変化では説明できない地震波速度異常、すなわちグローバルなトモグラフィーモデルでは表現できない急峻な変化を反映している。過去の地球の CMB の条件をとらえるためには、時間とともにパターンが変わるマントル対流モデルが用いられる。火星の場合、新たなパターンは巨大衝突やマントルプルームによる局所的な加熱を考慮したものである。再現に成功した地球ダイナモに関連する観測事実としては、過去数億年間の地磁気の逆転頻度に加えて、現在のコア対流と地球磁場で持続的に見られる形態上の特徴があげられる。火星に対するモデルは太古のダイナモの終焉や、地殻磁場の半球的二分生の説明を目指している。われわれは、以上の成果を報告し、それらの地球物理学的意義を議論し、将来の展望について考える。

日本語原稿執筆者:高橋 太(九州大学 大学院理学研究院 地球惑星科学部門)(敬称略)

Solid earth sciences

高圧における金属鉄の音速:その実験的制約と外挿、そして地震学モデルとの比較

Antonangeli D, 大谷 栄治

Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models

Antonangeli D, Ohtani E

[Keywords] Sound velocity measurements, High pressure, hcp-Fe, Extrapolation schemes, Earth's inner core, Comparison with seismic models

極端温度圧力条件下における鉄の音速の決定は、地球のコアの地震学的情報を解釈するうえで不可欠なことであるが、実験的に非常に困難な課題である。ここでは、hcp- 鉄(六方最密充填構造(hexagonal close-packed, hcp)にある鉄)の総波速度に焦点を絞り、金属鉄合金のメガバールに及ぶ超高圧下で音速を測定する様々な技術・方法について概説した。

これまで報告されてきた高圧下における密度・地震波速度の測定値は、用いられた圧力スケールや密度を求めるための状態方程式に違いがあり、そのまま比較することができない点に注意すべきである。ここでは、これらの問題点に留意して、これまで様々な方法で測定されてきた室温高圧下での hcp- 鉄の縦波速度と密度について、共通の圧力スケールと状態方程式を用いて校正し直し、比較することによって、縦波速度と密度の圧力依存性と密度依存性についての基準となる関係式を求めた。

この関係式は、地震波モデルと比較するために必要な、hcp-鉄の縦波速度と密度の温度依存性、融点近傍効果、ニッケルや軽元素の存在などの複雑な効果をより正確に評価して、最終的に信頼できる内核の化学組成を制約するために重要な基準となる。

日本語原稿執筆者:大谷 栄治 (東北大学大学院理学研究科)(敬称略)

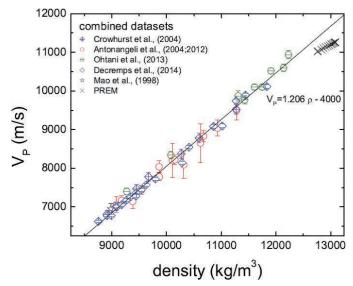


図1:様々な実験について、同じ圧力スケールと状態方程式に基づいた 室温での hcp 鉄の密度と縦波速度との関係。これまでの実験結果は良い一致を示す。

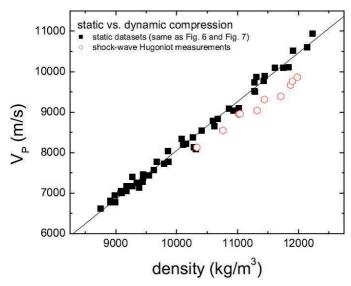
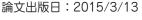



図2:静的な実験(300K)と衝撃波実験(ユゴニオ)によって得られた金属鉄(hcp-鉄)の音速と密度の関係の比較。密度と縦波速度の関係(バーチの法則)の温度依存性を示す。

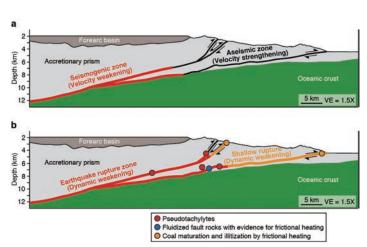
https://doi.org/10.1186/s40645-015-0034-9

http://progearthplanetsci.org/index.html

Review

Solid earth sciences

付加体中の断層岩から洞察した沈み込み帯における地震断層運動


氏家 恒太郎, 木村 学

Earthquake faulting in subduction zones: insights from fault rocks in accretionary prisms

Ujiie K, Kimura G.

[Keywords] Subduction earthquake, Accretionary prism, Fault rock, NanTroSEIZE

沈み込みプレート境界に沿って発生する地震は、地球上において解放される地震モーメントのほとんどを担い、しばしば地盤振動や津波によって甚大な被害をもたらす。沈み込みプレート境界地震の多くは深海下で起こるため、沈み込み帯における地震断層運動のダイナミクスは良く分かっていなかった。しかしながら、統合国際深海掘削計画として実施されている南海トラフ地震発生帯掘削計画やプレート境界地震震源域から上昇し現在地表に露出する付加体中の断層岩研究により、沈み込み帯における地震断層運動の理解が飛躍的に進んだ。この総説論文では、南海トラフ沈み込み帯とその陸上アナログである四万十付加体に特に焦点をあて、過去10年間で鍵となる前進をもたらした断層岩と断

Ujiie and Kimura, Fig. 17

沈み込み帯における地震断層運動に関する概念図

層帯物質を用いた室内実験の研究成果を中心に紹介する。沈み込み帯における地震断層運動に関する新しい洞察は、 以下の4点に要約することができる。

- (1) 沈み込み帯浅部と深部において、速度強化の摩擦特性を示す物質に沿って地震性滑りが起こったことが示された。
- (2) 地震時の断層の動的弱化は熔融潤滑や粉砕物の流動化によるものであることが判明し、地震時の変形メカニズムを支配しうる要因が明らかとなった。
- (3) 地震時の岩石-流体相互作用や鉱物学的・地球化学的変化が明らかとなった。
- (4) 地質学的・実験的視点からスロー地震群が検討されるようになった。

日本語原稿執筆者:氏家 恒太郎(筑波大学 生命環境系 地球進化科学専攻)(敬称略)

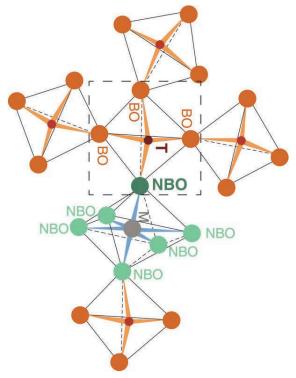
http://progearthplanetsci.org/index.html

Review

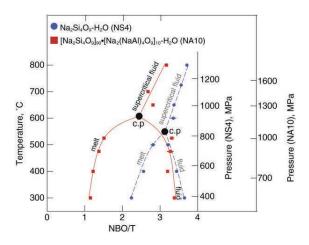
Solid earth sciences

高温高圧下における熱水流体とマグマの相互作用

Bjorn Mysen


Water-melt interaction in hydrous magmatic systems at high temperature and pressure

Bjorn Mysen


[Keywords] Hydrous magma, Aqueous fluid, Melt structure, Viscosity, Isotope partitioning, Partial melting, Water solubility, Silicate solubility, Glass transition, Solution mechanism

この論文は、地球内部の含水マグマ系におけるマグマと流 体の構造と物性に関する最近の実験結果についての総説であ る。流紋岩マグマや安山岩マグマのような珪長質のマグマへ の水の溶解度が、なぜ玄武岩マグマへの溶解度よりも非常に 大きいのかは、メルト中への水の溶解度とメルトの化学組成 の間の複雑な関係によって説明することができる。また、熱 水流体中のケイ酸塩の溶解度もまた化学組成と金属イオンの 電気的性質によって説明することができる。500℃から 550℃までの温度領域では、熱水流体や含水マグマ中におい て水素結合は、重要な役割を担っていない。むしろ含水マグ マおよび熱水溶液の性質は、ケイ酸塩の分子種Qn(ここで n はそれぞれの分子種における架橋酸素の数である)が総化 学組成、ケイ酸塩の組成、温度、圧力によってどのように変 化するのかによって決まる。ケイ酸塩マグマ、熱水流体、そ して超臨界流体においては、水とマグマの相互作用を記述す る反応は共通である。水がマグマに溶解するとマグマの重合 度はその組成や含水量によって変化する。アルカリに富む珪 長質マグマの性質は、より苦鉄質なマグマよりも大きく含水 量に依存する。このような含水マグマの輸送特性や構造は Qnの変化によってモデル化することができる。含水系の溶 融関係や微量成分の分配係数も同様に、このQnによって記 述することができる。さらに、安定同位体の分別作用(例え ば水素同位体比 D/H) も、これによって合理的に理解する ことができる。水溶液中のケイ酸塩成分は、微量元素の溶解 度を桁違いに増大させ、水素 H や重水素 D の錯体の分子種 を変化させることによって、HやDの分別係数を大きく変 化させることが明らかになっている。

日本語原稿執筆者:大谷 栄治(東北大学大学院理学研究科) (敬称略)

架橋酸素 (BO) と非架橋酸素 (NBO) の模式図

含水ナトリウムアルミナケイ酸塩系における含水マグマと 熱水流体中のケイ酸塩成分の重合度 NBO/T の温度依存性

Review

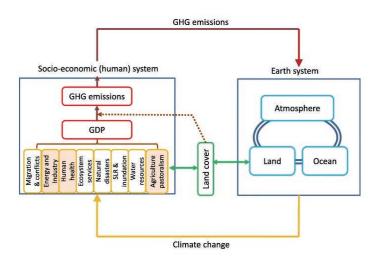
Interdisciplinary research

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

気候と社会・経済システムの相互作用における重要なプロセス・部門の特定:地球ー人間システムの統合に向けたレビュー


立入 郁, 蘇 宣銘, 松本 健一

Identifying key processes and sectors in the interaction between climate and socio-economic systems: a review toward integrating Earth-human systems

Tachiiri K, Su, X, Matsumoto, K

[Keywords] Earth system model, Integrated assessment model, Socio-economic system, Climate system, Human system

地球システムと社会経済システムの相互作用は、温度目標達成の困難さに無視できない影響を与える可能性が指摘されている。本研究では、この相互作用の解析に向けて地球システムモデルと社会経済モデルの結合を検討するため、既往研究のレビューを行った。その主目的は気候変化が社会経済システムに影響を与え、その影響が気候に返ってくるというフィードバックにおける重要性の観点から、考慮すべき重要なプロセス・部門を特定することである。そのため、まず各プロセス/部門について、物理的・生態学的な直接的影響に関する文献レビューを行った。さらに可能な場合には経済生産(GDP)や温室効果ガス(GHG)排出への影響に関する文献もレビューした(また、適応についても簡単

地球一人間(社会経済)システム相互作用概念図

に触れた)。その結果、GHG 排出量に最も大きな影響を与えるプロセスは土地生産性変化であり、3~5%の影響があった。また、GDP に最も大きな影響を与えるのは労働生産性の変化であり、1~5%の影響がみられた。また、エネルギー部門においては、温度上昇時の冷房需要の増加により、GHG 排出量が1%程度増加する場合がある。このほか、保険・金融部門においては、倒産銀行の救済費用がGDPの5~15%に上るという研究例もある(これを扱うには通常の均衡モデルでは不十分であり、エージェントベースの経済モデルが必要である)。このほか、水資源、海面上昇、自然災害、生態系サービス、疾病なども GHG 排出量や GDP に無視できない影響を与える可能性が示された。但し、多くのプロセス/部門について、社会経済全体への影響についての定量的評価を伴う文献数がまだ限られており、気候へのフィードバックにおける相対的重要性についての確定的な結論を得るため、より多くの研究の蓄積が待たれる。特に、移民や紛争は、大きな被害をもたらす可能性を持つが、現状では経済的被害やGHG 排出への影響の定量的評価は難しく、さらなる研究蓄積が必要である。

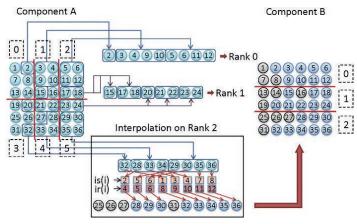
立入 郁 (海洋研究開発機構 地球環境部門 環境変動予測研究センター)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

結合ライブラリ Jcup3: その思想と応用


荒川 隆, 井上 孝洋, 八代 尚, 佐藤 正樹

Coupling library Jcup3: its philosophy and application

Arakawa T, Inoue T, Yashiro H, Satoh M

[Keywords] Earth system modeling, Coupler, Coupled simulation

現代の気候・気象シミュレーションでは大気や海洋などの複数のモデルコンポーネントが必要な情報を相互に交換しつつ計算を実行するような形態をとることが一般的である。これらのモデルコンポーネントはそれぞれが表現する物理現象の特性に応じた時空間スケールを持つため、モデルの結合においては適切な時間間隔で適切な格子変換を行いデータ交換するソフトウェアが求められる。結合ライブラリJcupは気候・気象シミュレーションを主対象とした汎用結合ソフトウェアである。高い汎用性を確保し利用の利便性・安全性を担保するため、プロノラム内部の処理を「値を変化させない処理」と「値を変化させる処理」に2分し、値を変化

Jcup のデータ交換ダイアグラム。灰色の丸はマスク値で、これらの値は 通信されないようになっている。四角で囲まれた部分が補間計算で、計算 コードを利用者が実装可能なように設計されている。

させる処理を利用者に対して可視化したことが Jcup の先進性である。具体的には Jcup は以下の2つの特徴をもつ。

- 1) 格子形状ではなく各モデルプロセスが担当する格子点の番号および補間計算時の格子点の対応関係を入力情報として与える。
 - 2)補間計算コードを利用者が自由に実装できる。

図に示した Jcup のデータフローでは四角で囲んだ補間計算部分が値を変化させる処理に該当し、この部分の計算コードを利用者が実装できるように設計されている。

適用事例として気候モデル MIROC の大気海洋結合,大気モデル NICAM-海洋モデル COCO 結合,NICAM-IO コンポーネント結合,地震モデル - 構造物モデル結合の4ケースを紹介した。MIROC 大気海洋結合は補間計算コードを自由に実装できるという Jcup の特徴によって結果に影響を及ぼすことなく既存の結合プログラムを置換した事例である。NICAM-COCO 結合は格子系に依存しないという Jcup の特徴によって従来にない複雑な格子系のモデルも結合できた事例,NICAM-IO コンポーネント結合は補間計算コード実装によって複数の補間方法を容易に組み込む事ができた事例である。地震 - 構造物モデル結合は気候・気象分野のモデルだけでなく構造物モデルのような非構造格子に対しても結合条件に応じて柔軟に対応可能であることを示した事例である。

日本語原稿執筆者: 荒川隆(高度情報科学技術研究機構)(敬称略)

Review

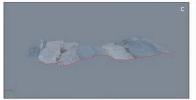
Interdisciplinary research

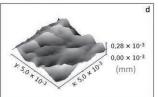
異なる空間スケールにおける岩盤河床の地形計測と地形学的文化遺産の研究のための応用

Gomez-Heras M, Ortega-Becerril JA, Garrote J, Fort R, Lopez-Gonzalez L

Morphometric measurements of bedrock rivers at different spatial scales and applications to geomorphological heritage research

Gomez-Heras M, Ortega-Becerril JA, Garrote J, Fort R, Lopez-Gonzalez L


[Keywords] Bedrock rivers, Geomorphological heritage, Non-destructive techniques, Digital elevation models, LiDAR, SfM, Photogrammetry, Microroughness


地形の数量的な特徴の把握は、地形学と関連する文化遺産の研究のために重要である。地形の三次元モデリングの技法は、文化遺産を含む地形学的なサイトの認定、特徴の把握、価値の評価に有用である。岩盤河床は、地形学的な文化遺産について検討する際に重要な要素となる。なぜなら、多数の独特かつ魅力のある地形学的な景観が岩盤河床と関連しており、岩盤河床に形成された侵食地形は容易には変化せず、長期的に景観を構成するからである。デジタル標高モデル(DEM)の普及により、地形の数量的指標を正確に求めたり、地形の形態と形成プロセスとの関係を詳しく検討したりすることが可能になってきた。本論文では、岩盤河床のDEM

Examples of DEM for different scales of morphometric measurements in bedrock rivers (a): Large-scale airborne scan (b), mesoscale SfM (c), microscale rugosimeter (d).

(a) 岩盤河床で地形を計測し、異なる空間スケールをデジタル標高モデル (DEM) 解析を行った例。(b) 航空機スキャナーを用いて、広域を捉えた 図。(c) メソスケールで、SfM (Structure from Motion) を用いて解析 した例。(d) マイクロ・ルゴシメータを用いた解析例。

を取得する複数の方法をレビューする。また本論文では、複数の空間スケールにおける DEM の分析を扱い、最近、微細な地形を計測する光学的機器として技術開発が進んだマイクロ・ルゴシメータを紹介する。微細な地形の計測と分析は、岩盤河床に関する多様な空間スケールの知見を増やす契機になる。また、地形の教育的な活用や理解の深化にも貢献するため、地形学的なサイトの多様性を社会的に評価する際にも有用な新技法といえる。

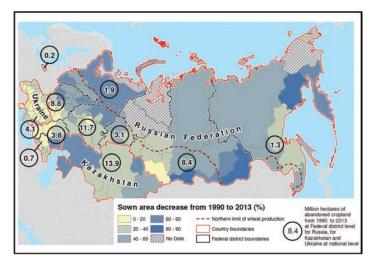
日本語原稿執筆者:小口高(東京大学 空間情報科学研究センター)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

北ユーラシア未来イニシアティブ(NEFI):21世紀における全球変化に向けた挑戦と道筋


Pavel Groisman et al.

Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

Pavel Groisman et al.

[Keywords] Environmental Changes, Northern Eurasia, Ecosystems dynamics, Terrestrial water cycle, Cryosphere retreat, Extreme and inclement environmental conditions, Sustainable development, Land-cover and land-use change, Integrated assessment models for decision-makers

過去数十年間, 地球システムは大きく変化し, それは特に北ユーラシアで顕著であった。北 ユーラシアの大国の社会経済変化もこの地域に 多様な環境変化をもたらし、全球の環境変化に 結びついた。北ユーラシア未来イニシアティブ (NEFI) は、北ユーラシア地球科学連携イニシ アティブ(NEESPI)の後継として計画され、 2004年に発足した。NEESPI は進行中の環境変 化を明らかにしようと計画され、その結果を社 会に知らせ、将来の社会の発展に役立てること を目的とした。NEFIは、環境や社会組織の変化 に直面しながらも、地域的な政策決定者が科学 的知見を用いて社会の発展に導けるよう手助け することを主眼に活動している。NEESPIの研 究成果, データ, モデルといった知的基盤は, NEFIの活動を支えるものである。本論文は、そ れらの知的財産に基づいた NEFI の研究のビジョ

旧ソビエト連邦(ロシア・ウクライナ・カザフスタン)における1990年から2013年までの農耕地の変化。この間の耕作放棄地は、ロシアで40メガヘクタール、ウクライナで5.4メガヘクタール、カザフスタンで13メガヘクタールである。

ンを示すものである。そして北ユーラシアを対象とした最近の研究事例を示し、NEFIの新たな科学的目標を定めるものである。これらの科学的目標を設定するために、研究の焦点を9つ提示し、それらを選択した経緯を解説する。9つの研究の焦点とは、北極の温暖化、極端事象の頻度・分布・強度の変化、雪氷の減少、陸域水循環の変化、生物圏の変化、土地利用の圧力、インフラの変化、環境変化に対する社会の応答、そして、全球地球システムにおける北ユーラシアの役割の定量評価、である。北ユーラシアにおける地球システムと人間システムとの強力なフィードバックループによって生じた環境変化(例えば、大規模な原野火災、干ばつ、水資源としての雪氷圏の衰退、海氷の減少)は、過去から現在に至る人間活動(例えば、大規模な水利用、土地利用や統治機構の変化)の結果であり、将来の新たな人間活動の可能性を制限し、あるいは与えるものとなる。したがって我々は、全球地球システム変化を定量評価するための統合評価モデルの必要性を強調する。NEFIによるモデリングは、北ユーラシアの環境変化に対する社会経済的な行動を決定する際に利用され、緩和と適応の努力の証拠を示すことを可能とする。

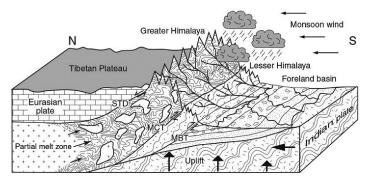
日本語原稿執筆者:檜山 哲哉(名古屋大学 宇宙地球環境研究所)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

ヒマラヤ西部における新生代気候とテクトニクス


Clift P D

Cenozoic sedimentary records of climate-tectonic coupling in the Western Himalaya

Clift P D

[Keywords] Monsoon, Climate-tectonic, Himalaya, Erosion, Exhumation, Arabian Sea, Foreland basin, Provenance, Geochemistry, Cenozoic, Weathering

ヒマラヤ前縁盆地およびインダス海底扇状地の堆積物は、新第三紀におけるモンスーンの強度変化がヒマラヤ西部における侵食やテクトニクスの発達にどのように影響を与えたかについての最も詳細な記録を与えてくれる。白雲母のAr-Ar年代は、ヒマラヤにおける急速な削剥が、ヒマラヤ中央部(10-25Ma)より西部(20-35Ma)において早かったことを示しているが、それはおそらく、リソスフェア下部からスラブが剥離することに起因するヒマラヤ山脈の隆起

ヒマラヤ山脈の隆起とアジア・モンスーンの関係

が西部においてより早く開始したことと、それに伴って夏季モンスーンが強化した結果と推定される。17Ma 以降に削剥速度が減少したが、これは山脈の隆起が遅くなったためであり、気候変動とは無関係であると思われる。一方、6-8Ma に起こったさらなる削剥速度の減少は、前縁盆地における炭素同位体のデータやオマーン沖の ODP Site 730から得られたヘマタイトゲータイト記録に示される夏季降水量減少の時期と一致している。一般に、乾燥化は風が強くなるにつれて進行することから、6-8Ma の乾燥化は全球的な寒冷化とリンクしたものと解釈される。中新世後期におけるこうしたモンスーン降水の衰退は、熱帯集束帯(ITCZ)の南下および小ヒマラヤにおける侵食速度の増加と同時期である。9Ma 以後に開始した小ヒマラヤ内帯におけるアンルーフィング(上面からの削剥により、より深部が露出する事)は、侵食が狭い範囲に集中したことによって引き起こされたデュープレックス構造形成の結果として起こったものだが、小ヒマラヤ内帯の広範囲な露出は6Ma 以後まで遅れた。5Ma 以後に起こったインダス川堆積物のネオジム同位体比の平均値の減少は、河川争奪による大規模な流域の獲得というよりは、むしろ、ナンガ・パルバット・マッシフにおけるアンルーフィングと共に起こった小ヒマラヤ内帯の露出に起因すると考えられる。

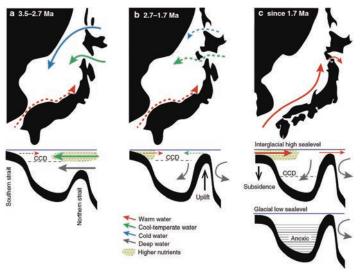
日本語原稿執筆者:王可(東京大学大学院理学系研究科地球惑星科学専攻)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

後期鮮新世から前期更新世における地球規模の気候変動および地域的な構造運動に関連した日本 海の微化石群集変化


板木 拓也

Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events

Itaki T

[Keywords] Radiolaria, Diatom, Calcareous nannofossil, Foraminifera, Ostracoda, Productivity, Paleoceanography, Northern Hemisphere glaciation, Tectonics, Tsushima Warm Current

日本海およびその周辺域で行われた陸上での 地質調査・掘削や海洋掘削で得られた試料を用 いた数多くの微古生物学的研究は、世界規模の 気候変動や地域的な構造運動に起因する日本海 の環境変化に関する重要な情報を提供している。 本論では、同地域における後期鮮新世から前期 更新世の微化石群集の主要な変化をレビューし た。後期鮮新世(3.5~2.7Ma)には、表層の プランクトン群集(石灰質ナンノ化石, 珪藻, 放散虫、浮遊性有孔虫)は、主に冷温から温帯 域に適応したタクサによって特徴付けられ、栄 養塩に富む北太平洋表層水が北方海峡を介して 日本海に流入していたことが伺える。当時、日 本海には放散虫の太平洋型深海種が生息してい たことから、北方海峡は 500m 以上の深度を 有し、ここより北太平洋の深層水が日本海に流

3つのステージにおける日本海の古地理変化を示した概略図。実線矢印は 外洋水の主要な流入経路、破線矢印は制限された流入経路を示す。

入していたものと考えられる。また、この時期には温暖性種が日本の沿岸域に沿って僅かに認められ、南方海峡から少量の温暖水が流入していた可能性が示唆される。北半球で氷床が発達し始めた 2.75Ma には、寒冷化を示す石灰質ナンノ化石および沿岸性介形虫が急激に増加した。それとほぼ同時に低温の中深層水を特徴付ける介形虫と放散虫の産出量が増加しており、これは冬期モンスーンの発達に伴う活発な深層循環により日本海固有水が形成され始めたことを示唆している。また、2.75Ma 頃に放散虫の太平洋型深海種が消滅した。これは、氷河性の海水準低下や東北日本の隆起による北方海峡の閉鎖あるいは浅化のために北太平洋から日本海への深海種の移入が阻まれたことに加え、日本海の深海域が断続的に無酸素環境となったためと考えられる。その後の2.3~1.3Ma における基礎生産の顕著な減少も北方海峡の縮小によって北太平洋からの栄養塩の供給が制限された結果と推定される。1.7Ma 以降、亜熱帯表層群集が増加し、これは南方海峡を介して日本海に対馬海流が本格的に流入し始めたことを示している。この南方海峡の成立は、沖縄トラフを含む日本の南西地域が沈降するのに引き続いて起こったようである。

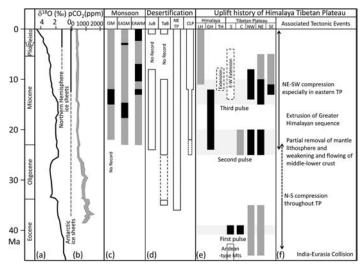
日本語原稿執筆者: 板木 拓也 (産業技術総合研究所 地質情報研究部門 海洋地質研究グループ) (敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

アジア・モンスーンの進化と変動、ヒマラヤ・チベット高原隆起とのリンケージの可能性


多田 隆治、郑 洪波、Clift P D

Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau

Tada R, Zheng H, Clift P D

[Keywords] East Asian summer monsoon, East Asian winter monsoon, Indian summer monsoon, Himalaya, Tibetan Plateau, Chinese Loess Plateau, Climate model, Tectonic-climate linkage, Westerly jet, Desertification

ヒマラヤ山脈ーチベット高原の隆起とアジ ア・モンスーンの成立・強化の間の関係は、固 体地球のテクトニクスと気候変動のリンケージ の典型例と見なされているが、それを検証する に必要なデータが不十分であったために長らく 未解明な問題であった。しかしながら、この問 題に関する私たちの理解はここ10年で著しく進 み、状況は急速に変わりつつある。そこで本論 文では、始新世以降のヒマラヤ・チベットの隆 起過程、その影響を評価しようとした気候モデ ルシミュレーション結果、そして古気候記録に 基づくインド及び東アジア・モンスーンの時空 変動復元に関する最近の研究成果を取りまとめ た。先ず、ヒマラヤ・チベットの隆起は、(1) 40~35Ma における南部~中部チベットの隆 起, (2) 25~20Ma における北部チベットの隆 起, (3) 15~10Ma における北東部~東部チ ベットの隆起,の3段階で起こったことが示さ れた。一方, 気候モデルからは, (i) 南部~中 部チベットの隆起がインド夏季モンスーンとソ マリジェットの強化を,(ii)北部チベットの隆

新生代におけるアジア・モンスーンの時代変化、内陸部砂漠化、ヒマラヤ・チベット高原隆起、そしてそれらと地球環境変化の関わり。(a) 底生有乳虫殻の δ^{18} O(Zachos 他、2001を改訂)、(b) 大気二酸化炭素濃度(Zhang 他、2013を改訂)、(c) アジア・モンスーン強度、(d) 内陸部砂漠化、(e) ヒマラヤ・チベット高原隆起、(f) 関連するテクトニック・イベントの時代変化を示している。(c) と (e) における灰色のバーは弱い活動、黒いバーは強い活動を示している。(d) における JuB はジュンガー盆地、TaB はタリム盆地を意味する。

起が東アジア夏季及び冬季モンスーンの強化とアジア内陸部の砂漠化を、そして (iii) 北東部〜東部チベットの隆起が東アジア夏季及び冬季モンスーンの更なる強化を引き起こしたことが予想されている。そこで、ヒマラヤ・チベットの隆起史と各隆起段階に対応した気候モデルシミュレーション結果の妥当性を、モデルによる予想と古気候データを比較することで検証した。40~35Ma における南部〜中部チベットの隆起に伴うインド夏季モンスーンおよびソマリジェットの強化については、これを検証するに十分な古気候データが未だ存在しない。しかしながら、隆起に伴う侵食と化学風化の強化が、大気中の二酸化炭素濃度を低下させ、地球の寒冷化を引き起こした可能性がある。一方、25~20Ma における北部チベットの隆起に伴う東アジア夏季及び冬季モンスーン強化とアジア内陸部砂漠化については、古気候データはそれらを強く支持した。最後に、15~10Ma における北東部〜東部チベットの隆起のアジア・モンスーンへの影響については、この時期が南極氷床の拡大と全球的な寒冷化の時期に重なり、寒冷化もモンスーンに影響を与える可能性が高いため、ヒマラヤ・チベットの隆起がモンスーンに与える影響を分離、評価することが難しい。

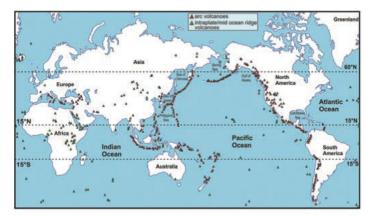
日本語原稿執筆者:多田 隆治(東京大学大学院 理学系研究科 地球惑星科学専攻)(敬称略)

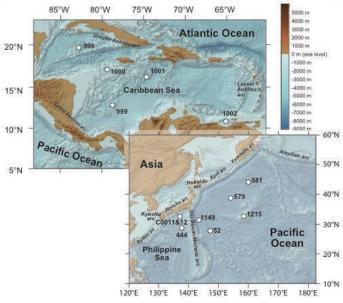
http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

海洋堆積物中に分散した火山灰を定量するための地球化学的アプローチ


Scudder R P, Murray R W, Schindlbeck J C, Kutterolf S, Hauff F, Underwood M B, Gwizd S, Lauzon R, McKinley C C


Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment

Scudder R P, Murray R W, Schindlbeck J C, Kutterolf S, Hauff F, Underwood M B, Gwizd S, Lauzon R, McKinley C C

[Keywords] Dispersed ash, Caribbean Sea, Equatorial Pacific Ocean, Northwest Pacific Ocean, Ash layers, Volcanic eruptions, DSDP, ODP, IODP

火山灰はこれまで長年の研究で海洋堆積物中 に見出されており、広範囲に運搬されるために 地球上のどこにでも分布することを考えると, その存在は普遍的であると言って良い。しかし ながら堆積物の構成要素としては、火山灰は広 い意味での「アルミノケイ酸塩」成分に分類さ れるがゆえに、非常に細粒の火山灰物質の有無 や、特にその組成を同定することは難しい課題 となっている。この難しさのために、多くの火 山灰研究は、様々な場所や時代において堆積層 の中に見つかる周囲とは明瞭に識別される層 (つまり, 厚さ数 mm から数 cm 以上の火山灰層 やそれぞれに含まれる火山ガラス)に着目して、 その存在をいかにして数々の地球上のプロセス と関連づけるかに注力してきた。それに比べて, 堆積物に分散・混合した火山灰は、あまり良く 研究されてこなかった。しかしながら、堆積物 に分散・混合した火山灰は、堆積層中の全火山 灰量に対して大きな割合を占めている。このよ うな分散・混合した火山灰は、地球化学的手法 に統計的手法を組み合わせることで、堆積物中 に元来含まれる火山灰の一部として同定するこ とが可能である。この論文では、これらの地球 化学的・統計的テクニックの進歩についてまと め、カリブ海、赤道太平洋、北西太平洋におい て、堆積物に分散・混合した火山灰の定量を 行ったケーススタディを紹介する。これらの地 球化学的研究(およびスミアスライドによる堆 積学的検討)の結果,局所規模あるいは地域規 模の火山弧から供給された火山灰が、海洋の広 い範囲にわたる堆積層中の重要な成分となりう ることが、どのケースからも明らかである。

上:様々なテクトニクス条件下で世界中に分布する地上の火山。分布図はhttp://d-maps.comを改変し、火山の位置は、スミソニアン全球火山活動計画(http://www.volcano.si.edu)から得た。

下:本論文で取り上げた堆積物掘削地点の位置図。データは、GeoMa-pApp (http://www.geomapapp.org; GMRT-Global Multi-Resolution Topography; Ryan et al., 2009) より。

日本語原稿執筆者:入野 智久(北海道大学 大学院 地球環境科学研究院)(敬称略)

論文出版日:2016/1/4

https://doi.org/10.1186/s40645-015-0077-y

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

沖縄トラフにおける表層水温プロキシ(アルケノン,有孔虫 Mg/Ca,浮遊性有孔虫群集)とその古海洋学的意味合い


Kim R A, Lee K E, Bae S W

Sea surface temperature proxies (alkenones, foraminiferal Mg/Ca, and planktonic foraminiferal assemblage) and their implications in the Okinawa Trough

Kim R A, Lee K E, Bae S W

[Keywords] Sea surface temperature, Okinawa Trough, Alkenone, Planktonic foraminiferal Mg/Ca ratio, Planktonic foraminiferal assemblages

沖縄トラフにおける3つの表層水温プロキシ(アルケノン, 浮遊性有孔虫 Mg/Ca, 浮遊性有孔虫群集)について,各プロキシが記録する水温情報と古海洋学研究における意味についてレビューした。プロキシの適用性を確認するために,それぞれのプロキシに関連した生物について,水柱における季節分布および鉛直分布をまとめるとともに,表層堆積物を用いて復元した水温を現在の表層水温の観測記録と比較した。アルケノン不飽和指標を使って計算された水温

沖縄トラフにおいてプロキシデータが示す完新世後期(0~3cal kyr BP) と最終氷期最盛期(18~21cal kyr BP)の表層水温

は年平均表層水温を示し、Globigerinoides ruber の Mg/Ca から計算された水温は夏から秋(6~11月)の表層水温を捉えていた。浮遊性有孔虫群集から計算された8月の表層水温は観測された表層水温とよく一致したが、2月について計算された結果は観測よりも3.6℃暖かかった。

表層水温プロキシを海洋堆積物に適用した結果について完新世後期(0~3cal kyr BP)と最終氷期最盛期(18~21cal kyr BP)の2つの時代を比較した。その結果,比較したプロキシの中では浮遊性有孔虫群集によって計算された8月の表層水温が最も温暖であった。アルケノン水温は浮遊性有孔虫 Mg/Ca 水温よりも低い値を示した。これは,前者が年平均表層水温,後者が夏から秋にかけての表層水温を記録していることに起因すると考えられる。浮遊性有孔虫群集による2月表層水温は計算処理に用いた統計的手法やデータセットに強く影響を受けていると推察される。このように,沖縄トラフにおいてアルケノンや浮遊性有孔虫 Mg/Ca を用いて表層水温を復元する際には,そのプロキシ記録の持つ"季節性"を考慮して議論する必要がある。また,浮遊性有孔虫群集は沖縄トラフにおいて過去の表層水温,特に冬季水温を復元する上で正確性に欠けると言わざるを得ない。アルケノンの生産者と G. ruber はどちらも表層混合層に生息しているため,生息深度は水温復元において大きな問題にならないと考えられる。

表層水温や塩分プロキシによって復元された沖縄トラフ表層水環境の氷期-間氷期変化についてもレビューした。 第四紀後期の間,沖縄トラフの表層水環境は黒潮と東アジアモンスーンシステムの変化に影響を受けていた。沖縄トラフの記録と中国の石筍,熱帯太平洋,北大西洋の記録を比較することにより,これらの間にはテレコネクションが存在することが明らかとなった。

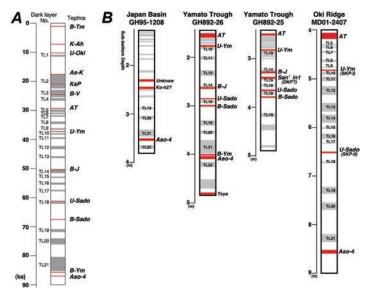
日本語原稿執筆者:佐川 拓也(金沢大学 理工研究域 自然システム学類)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

古海洋学・古気候学研究への海底テフラの利用:日本海堆積物を例として


池原 研

Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology

Ikehara K

[Keywords] Tephra, Key bed, Japan Sea, Stratigraphy, Chronology, Paleoceanography

テフラは大噴火の産物であり、 給源火山から 数千km離れた場所にも堆積する場合がある。 テフラは陸域, 湖沼域, 海域, 雪氷域などの異 なる環境下にも同時に堆積するので、地質学的 に非常に重要な同時間面となる。プレート境界 域の変動帯に位置する日本列島には多数の火山 が存在し、日本列島とその周辺海域にテフラを 供給してきた。したがって、これらのテフラを 正確に同定・対比することで異なる環境あるい は地点間の堆積物記録を比較することが可能で ある。また、連続した堆積物である海底堆積物 中のテフラを十分に活用することで、より正確 な層序モデルの構築が可能である。特に、明暗 互層で特徴づけられる日本海堆積物では、テフ ラを介して, より正確な層序対比が可能である 一方、特徴が似た別のテフラを暗色層層序との 関係から区別することも可能である。したがっ

日本海の後期第四紀のテフラと暗色層層序の関係(A)とそのもととなったコア中の酸素同位体ステージ3-5.3のテフラの挟在状況(B)

て、日本海堆積物中のテフラ層序はより精度の高いものとなりうる可能性がある。さらに、テフラの化学組成の時空間変化は島弧域のマグマ進化の記録であり、広域的なテクトニクスとの関係を論じられる可能性をもつ。

古気候学的には、テフラは異なる環境下での古気候イベントをつなぐ鍵層となる。例えば、琵琶湖や水月湖などの湖沼堆積物の古気候記録と日本海堆積物中の古気候記録の前後関係あるいは同時性をテフラを介して比較することは汎世界的な気候変動様式の理解の上でも重要である。また、陸域と海域において同一のテフラの放射性炭素年代を比較することは、海洋レザバーの時空間変化を知る一つの方法である。海洋レザバー値は海洋循環などの影響を受けるため古海洋変動解明に有用であるほか、より正確な古気候イベント発生時期の特定のためにも重要である。

このように、テフラは層序学、年代学、火山学のみならず、古海洋学や古気候学の上でも重要である。

日本語原稿執筆者:池原 研(産業技術総合研究所 地質調査総合センター 地質情報研究部門)(敬称略)

http://progearthplanetsci.org/index.html

Review

Interdisciplinary research

鮮新世から現世までの黒潮と対馬海流の歴史:マルチプロキシーアプローチ

Gallagher S J, 北村 晃寿, 井龍 康文, 板木 拓也, 小泉 格, Hoiles P W

The Pliocene to Recent History of the Kuroshio and Tsushima Currents: a multi-proxy approach

Gallagher S J, Kitamura A, Iryu Y, Itaki T, Koizumi I, Hoiles P

[Keywords] Kuroshio Current, Tsushima Current, Pliocene, Pleistocene, Holocene, Paleoceanographic proxies, Biogeography, Microfossils, Macrofossils, Geochemistry

黒潮は北太平洋亜熱帯循環に支配された大規模な西岸境界 流であり、インド―太平洋暖水プールから温暖な亜熱帯海水 を日本にもたらし、アジアの気候を支配する主因の一つであ る。対馬海流は、黒潮の分枝流で、日本海に温暖な海水をも たらす。本論では、これらの海流の地質学的時間スケールで の歴史を解明するために様々なプロキシーを使う。サンゴ礁、 ベッドフォーム、堆積物の供給源や分級度などの堆積学的プ ロキシーは、過去の海流の強度や緯度を示す。サンゴ群集や 貝類群集などのプロキシーは、過去の沿岸流の動態を示す。 微化石群集(浮遊・底生有孔虫,珪藻,放散虫やコッコリ ス) や有機物・無機物の地球化学分析は、海成層に記録され た過去の表層海水温や塩分の歴史を解明できる。熱帯の花 粉,微化石の日本への運搬とインド―太平洋の無脊椎動物の 日本への移動も過去の海流の動態を表す。これらのプロキ シーの層位分布は、黒潮が約3Maまでには、現在の緯度(北 緯35度)に到達していたことを示す。この時期の日本周辺 は現在よりも水温が1-2℃低かった。一方,この時期の南方 海峡を越えた対馬海流は弱かったが、約2Ma(詳しく言うと 1.7Ma. 海洋酸素同位体ステージ59) までに南方海峡が地 殻の伸張で形成された。そして、それ以降、間氷期ごとに対 馬海流が日本海に流れ込むようになった。約1Maの氷期― 間氷期サイクルの強化は、北太平洋亜熱帯循環と黒潮を強化 した。これは、琉球列島のサンゴの拡大のトリガーとなり、 サンゴ礁は現在の緯度まで到達した。その後、サンゴ礁の北 限は間氷期には北緯31度に達し、氷期には北緯25度に後退 するという変動を繰り返した。浮遊性有孔虫のプロキシー データは, 最終氷期最盛期では, 東台湾海峡が狭くなるため, 北緯24度で、黒潮の流路が現在の流路から東にそれて太平 洋に向かったことを示す。その後、黒潮の流れは、完新世の 間に、現在の位置にもどる。しかし、海洋モデルと地球化学 プロキシーは、黒潮の流路は氷期と間氷期を通じて同じだっ たことを示すが、氷期の流路については検討の余地がある。 未来の気候変動に伴う海流の動態を予測する際には、過去に 起きた類似の現象は重要な研究対象となるが、その目的に使 うには北太平洋に関する研究は十分ではない。未来の地球温 暖化への黒潮の応答のモデリングは、黒潮の速度が0.3m/s まで増加し、黒潮続流が0.5度北に移動することを示す。

日本語原稿執筆者:北村 晃寿

(静岡大学 大学院 理学研究科 地球科学専攻)(敬称略)

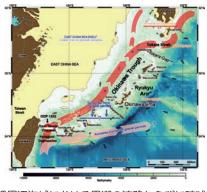


図1: 沖縄周辺海域における黒潮の流路ならびに琉球サンゴ礁の氷期と間氷期における北限の予測位置。

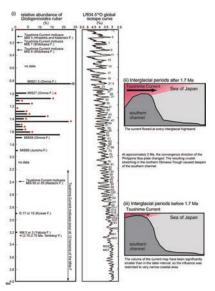
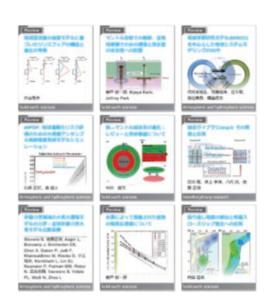



図2: (i) 本州の日本海沿いに露出する鮮新統・第四系における対馬海流指標の浮遊性有乳虫 Globigerina ruber の層位分布と同時代の酸素同位体変動曲線 LR04カーブ。1.6~1.0Ma の赤丸は、Hoiles et al. (2012) が報告した大桑層の化石記録に基づくインドー太平洋暖水プールに生息する底生有乳虫が産出した間氷期を示す。0Ma と~3Ma の赤丸は、Gallagher et al. (2009) によるインドー太平洋暖水プールに生息する底生有乳虫の産出記録である。(ii) は1.7Ma 以降の間氷期の高海水準期の日本海南方海峡の状態を示す。(iii) は1.7Ma 以前の間氷期の高海水準期の日本海南方海峡の状態を示す。

論文出版日:2015/6/27

発行日: 2022 年 4 月

Correspondence: peps_edit@jpgu.org

Copyright ©2022 PEPS Editorial office All rights reserved.

PEPS is supported by a Grant-in-Aid for Publication of Scientific Research Results (19HP1001) from

Japan Society for the Promotion of Science.